DOI QR코드

DOI QR Code

Analyses of the current market trend and research status of indoor air quality control to develop an electrostatic force-based dust control technique

정전기적 힘을 이용한 실내공기 미세부유먼지 제거 요소기술의 개발을 위한 기술별 시장현황 및 연구 동향 분석

  • Yoon, Young H. (Environmental Engineering Research Division, Korea Institute of Construction & Technology) ;
  • Joo, Jin-Chul (Environmental Engineering Research Division, Korea Institute of Construction & Technology) ;
  • Ahn, Ho-Sang (Environmental Engineering Research Division, Korea Institute of Construction & Technology) ;
  • Nam, Sook-Hyun (Environmental Engineering Research Division, Korea Institute of Construction & Technology)
  • 윤영한 (한국건설기술연구원 수자원환경연구본부 환경연구실) ;
  • 주진철 (한국건설기술연구원 수자원환경연구본부 환경연구실) ;
  • 안호상 (한국건설기술연구원 수자원환경연구본부 환경연구실) ;
  • 남숙현 (한국건설기술연구원 수자원환경연구본부 환경연구실)
  • Received : 2013.11.05
  • Accepted : 2013.12.05
  • Published : 2013.12.31

Abstract

This study examined the current and future Indoor Air Quality (IAQ) control device markets and analyzed the recent studies on indoor air pollutantr emoval to develop a new technology for fine dust control. Currently, the mechanical filter technique occupies the bulk of the IAQ control market but the electronic technique is emerging as an alternative to control fine dust efficiently. Among the gaseous VOCs and fine dust particles contaminating the indoor air quality, fine dust particles are more problematic because they threaten human health by penetrating deep into the body and producing secondary contaminants by chemical reaction with VOCs. The electronic IAQ control device using dielectrophoretic and electrostatic forces is a good option for public spaces where many people pass, and at the same time, it needs to consider temperature, humidity, and the particle properties of specific areas to highlight the control efficiency. Electronic-related technology is expected to be used widely in many public/private spaces wherever a dust-free environment is required.

Keywords

Air purification;Airborne dust;Indoor air quality;Multi-purposed facility;Research trend analysis

Acknowledgement

Grant : 유전영동, 정전기력 기반의 먼지차폐 원천기술 개발

Supported by : 한국건설기술연구원

References

  1. Molhave, L., Krzyanowski, M. The right to health indoor air; status by 2002. Indoor Air. pp. 50-53, 2003. DOI: http://dx.doi.org/10.1034/j.1600-0668.13.s.6.7.x https://doi.org/10.1034/j.1600-0668.13.s.6.7.x
  2. Z. Wang, Z. Bai, H. Yu, J. Zhang, T. Zhu, 'Regulatory standards related to building enegry conservation and indoor-air-quality during rapid urbanization in China', Energy build., 36, pp. 1299-1308, 2004. DOI: http://dx.doi.org/10.1016/j.enbuild.2003.09.013 https://doi.org/10.1016/j.enbuild.2003.09.013
  3. Young chol, C., "Direction of improvement of management system for indoor air quality", Korea association for public administration, 2012.
  4. B.F. Yu, Z.B. Hu, M. Liu, H.L. Yang, Q.X. Kong, Y.H. Liu, "Review of research on air-conditioning systems and indoor air quality control for human health", International Journal of Refrigeration, pp. 32, 3-20, 2009. DOI: http://dx.doi.org/10.1016/j.ijrefrig.2008.05.004 https://doi.org/10.1016/j.ijrefrig.2008.05.004
  5. Seppanen, O., Fisk, W.J. Association of ventilation system type with SBS symptoms in office workers. Indoor Air. pp. 98-112, 2002. DOI: http://dx.doi.org/10.1034/j.1600-0668.2002.01111.x https://doi.org/10.1034/j.1600-0668.2002.01111.x
  6. U.S. Indoor Air Quality Market, BCC Research, 2012.
  7. U.S. EPA, Indoor Air Quality, http://www.epa.gov/iaq/index.html.(accessed Oct,. 15, 2013)
  8. Cox, S.S., Little, J.C., Hodgson, A.T., "Predicting the emission rate of volatile organic compounds from vinyl flooring. Environ", Sci. Technol. 36, pp. 709-714, 2002. DOI: http://dx.doi.org/10.1021/es010802+ https://doi.org/10.1021/es010802+
  9. L.Z. Zhang, J.L. Nju, "Effects of substrate parameters on the emissions of volatile organic compounds from wet coating materials", Bulid. Environ. 38, pp. 939-946, 2003. DOI: http://dx.doi.org/10.1016/S0360-1323(03)00032-5 https://doi.org/10.1016/S0360-1323(03)00032-5
  10. A. Rohr, C.J. Weschler, P. Koutrakis, "Generation and quatification of ultrafine particles through terpene/ozone reaction in a chamber setting", Aerosol Sci. Technol, 37(1), pp. 65-78, 2003. DOI: http://dx.doi.org/10.1080/02786820300892 https://doi.org/10.1080/02786820300892
  11. He, C.R., Morawska, L., Hitchins, J., Gilbert, D., "Contribution from indoor sources to particle number and mass concentrations in residential houses". Atmos. Envrion. 38, pp. 3405-3415, 2004. DOI: http://dx.doi.org/10.1016/j.atmosenv.2004.03.027 https://doi.org/10.1016/j.atmosenv.2004.03.027
  12. Gramotnev, G., Ristovski, Z., "Experimental investigation of ultra-fine particle size distribution near a busy road", Atmos. Environ. 38(12), pp. 1767-1776, 2004. DOI: http://dx.doi.org/10.1016/j.atmosenv.2003.12.028 https://doi.org/10.1016/j.atmosenv.2003.12.028
  13. Sawant, A.A., Na, K., Zhu, X.N., Cocker, K., Butt, S., Song, C., Cocker III, D.R., "Characterization of PM2.5 and selected gas-phase compounds at multiple indoor and outdoor sites in Mira Loma, California Austria", Atmos. Environ. 38, pp. 6269-6278, 2004. DOI: http://dx.doi.org/10.1016/j.atmosenv.2004.08.043 https://doi.org/10.1016/j.atmosenv.2004.08.043
  14. P. Zhao, J.A. Siegel and R.L. Corsi, "Ozone removal by HVAC filters", Atmos. Environ. 41, pp. 3151-3160, 2007. DOI: http://dx.doi.org/10.1016/j.atmosenv.2006.06.059 https://doi.org/10.1016/j.atmosenv.2006.06.059
  15. M. Hyttinen, P. Pasanen, P. Kalliokoski, "Reactions of ozone on clean, dusty and sooty plenums", ASHARE Trans, 112(2), pp. 581-591, 2006.
  16. M.C. Verdenelli, C. Cecchini, C. Orpianesi, G. M. Dadea, A. Cresci, "Efficacy of antimicrobial filter treatment on microbial colonization of air panel filters", J. Appl. Microbiol., 94, pp. 9-15, 2003. DOI: http://dx.doi.org/10.1046/j.1365-2672.2003.01820.x https://doi.org/10.1046/j.1365-2672.2003.01820.x
  17. Z.H. Huang, F.Y. Kang, K.M. Liang and J.M. Hao. Breakthrough of methylethylketone and benzene vapor in activated carbon fiber beds, p.107-115, J. Hazard. Mater, 2003. DOI: http://dx.doi.org/10.1016/S0304-3894(02)00284-4 https://doi.org/10.1016/S0304-3894(02)00284-4
  18. K.D. Dombrowski, C.M.B. Lehmann, P.D. Sullivan, D. Ramirez, M.J. Rood., K.J. Hay, "Organic vapor recovery and energy efficiency during electric regeneration of an activated carbon filter cloth adsorber", J. Environ. Eng., 130(3), pp. 268-275, 2004. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9372(2004)130:3(268) https://doi.org/10.1061/(ASCE)0733-9372(2004)130:3(268)
  19. J. Zhao., X. Yang, "Photocatalytic oxidation for indoor air purification: a literature review", Build. Environ. 38(38), pp. 645-654, 2003. DOI: http://dx.doi.org/10.1016/S0360-1323(02)00212-3 https://doi.org/10.1016/S0360-1323(02)00212-3
  20. W. H. Yang, D. W. Kim, M. H. Chung, J. S. Yang., K. S. Pakr, "Improvment of indoor air quality by coating of indoor materials of $TiO_2$ Phtocatalyst sol", Kor. J. Env. Hlth., 30(2), pp. 92-97, 2004.
  21. P, Y, Zhang, F. Y. Liang, G. Yu, Q. Chen, W. P. Zhu, "A comparative study on decomposition of gaseous toluene by $O_3$/UV, $TiO_2$/UV and $O_3$/$TiO_2$/UV", J. Photochem. Photobiol. A156(1-3), pp. 189-194, 2003. https://doi.org/10.1016/S1010-6030(02)00432-X
  22. Y. Choi, W. Choi, C.H. Lee, T. Hyeon, H.I. Lee, "Visible light-induced degradation of carbon tetrachloride on dye-sensitized $TiO_2$", Envrion. Sci. Technol., 35(5), pp. 966-970, 2001. DOI: http://dx.doi.org/10.1021/es001245e https://doi.org/10.1021/es001245e
  23. M. Zhang, Z. S. Jin, J. W. Zhang, Z. J. Zhang, H. X. Dang. Effect of calcination and reduction treatment on the photocatalytic activity of CO oxidation on Pt/$TiO_2$, p. 59-63, J. Mol. Catal., A: Chem, 225, 2005. DOI: http://dx.doi.org/10.1016/j.molcata.2004.08.034 https://doi.org/10.1016/j.molcata.2004.08.034
  24. J.K. Kim, J. Alajmy, A.C. Borges, J.C. Joo, H.S. Ahan, L.C. Campos. Degradation of humic acid by photocatalytic reaction using nano-sized ZnO/laponite composite (NZLC), p. 224-1749, Water Air Soil Pollut. 2005.
  25. C.I. Calle, C.R. Buhler, J.L. McFall, S.J. Snyder. Particle removal by electrostatic and dielectrophoretic forces for dust control during lunar exploration missions, p. 89-62, J. Electrostatics 67, 2009. https://doi.org/10.1016/j.elstat.2009.02.012

Cited by

  1. Characterization of Fine Dust Collection Using a Filter Ventilation vol.26, pp.2, 2015, https://doi.org/10.14478/ace.2015.1022
  2. Movement Control of Particulate Pollutants in Indoor Air Generated by Voltage and Frequency of Alternating Current vol.40, pp.4, 2018, https://doi.org/10.4491/KSEE.2018.40.4.155