Effects of Climate-Changes on Patterns of Seasonal Changes in Bird Population in Rice Fields using a Prey-Predator Model

포식자-피식자 모델을 이용하여 기후변화가 논습지를 이용하는 조류 개체군 동태에 미치는 영향 예측

  • Lee, Who-Seung (Department of Biological Sciences, Universite du Quebec a Montreal)
  • 이후승 (퀘벡주립대학교 생물학과)
  • Received : 2013.08.28
  • Accepted : 2013.10.24
  • Published : 2013.12.31


BACKGROUND: It is well known that rice-fields can provide excellent foraging places for birds including seasonal migrants, wintering, and breeding and hence the high biodiversity of rice-fields may be expected. However, how environmental change including climate-changes on life-history and population dynamics in birds on rice-fields has not been fully understood. In order to investigate how climate-change affects population migratory patterns and migration timing, I modeled a population dynamics of birds in rice-fields over a whole year. METHODS AND RESULTS: I applied the Lotka-Volterra equation to model the population dynamics of birds that have been foraging/visiting rice-fields in Korea. The simple model involves the number of interspecific individuals and temperature, and the model parameters are periodic in time as the biological activities related to the migration, wintering and reproduction are seasonal. As results, firstly there was a positive relationship between the variation of seasonal population sizes and temperature change. Secondly, the reduced lengths of season were negatively related to the population size. Overall, the effects of the difference of lengths of season on seasonal population dynamics were higher than the effects of seasonal temperature change. CONCLUSION(S): Climate change can alter population dynamics of birds in rice-fields and hence the variation may affect the fitness, such as reproduction, survival and migration. The unstable balances of population dynamics in birds using paddy rice field as affected by climate change can reduce the population growth and species diversity in rice fields. The results suggest that the agricultural production is partly affected by the unstable balance of population in birds using rice-fields.


  1. Ahmed, N., Garnett, S.T., 2011. Integrated rice-fish farming in Bangladesh: meeting the challenges of food security, Food Sec. 3, 81-92.
  2. Begon, M., Harper, J.L., Townsend, C.R., 1996. Ecology: individuals, populations and communities, pp. 214-264, Blackwell Science Ltd, Cambridge, MA.
  3. Berg, H., Berg, C., Nguyen, T.T., 2012. Integrated rice-fish farming: safeguarding biodiversity and ecosystem services for sustainable food production in the mekong delta, J. Sustain. Agr. 36, 859-872.
  4. Both, C., Bouwhuis, S., Lessells, C.M., Visser, M.E., 2006. Climate chagne and population declines in a long-distnace migratory bird, Nature 441, 81-83.
  5. Clark, J.S., Bell, D.M., Kwit, M., Stine, A., Vierra, B., Zhu, K., 2012. Individual-scale inference to anticipate climate-change vulnerability of biodiverity, Philos. T. Roy. Soc. B 367, 236-247.
  6. Elphick, C.S., 2010. Why study birds in rice fields? Waterbirds 33, 1-7.
  7. Fasola, M., Ruiz, M., 1996. The value of rice fields as substitutes for natural wetlands for waterbirds in the Mediterrnean region, Colon. Waterbird. 19, 122-128.
  8. Fraser, K.C., Silverio, C., Kramer, P., Mickle, N., Aeppli, R., Stutchbury, B.J.M., 2013. A trans-hemispheric migratory songbird does not advance spring schedules or increase migration rate in response to record-setting temperatures at breeding sites, PLoS One 8, e64587.
  9. Fujioka, M., Armacost Jr, J.W., Yoshida, H., Maeda, T., 2001. Value of fallow farmlands as summer habitats for waterbirds in a Japanese rural area, Ecol. Res. 16, 555-567.
  10. Graham, L.K., Yoon, T., Kim, J.J., 2010. Stress impairs optimal behavior in a water foraging choice task in rats. Learn Mem., 17, 1-4.
  11. Groothuis, T.G.G., Carere, C., Lipar, J., Drent, P.J., Schwabl, H., 2008. Selection on personality in a songbird affects maternal hormone levels tuned to its effect on timing of reproduction, Biol. Lett. 4, 465-467.
  12. Haussmann, M.F., Longenecker, A.S., Marchetto, N.M., Juliano, S.A., Bowden, R.M., 2012. Embryonic exposure to corticosterone modifies the juvenile stress response, oxidative stress and telomere length, Proc. Biol. Sci. B 279, 1447-1456.
  13. Horie, T., Nakagawa, H., Nakano, J., Hamotani, K., Kim, H.Y., 1995. Temperature gradient chambers for research on global environment change. III. A system designed for rice in Kyoto, Japan, Plant. Cell Environ. 18, 1064-1069.
  14. Hossain, S.T., Sugimoto, H., Ahmed, G.J.U., Islam, M.R., 1992. Effect of integrated rice-duck farming on rice yield, farm productivity, and rice-provisioning ability of farmers,. Asian J. Agr. Dev. 2: 79-86.
  15. Huffaker, C.B., 1958. Experimental studies on predation: dispersion factors and predator-prey oscillations, Hilgradia 27, 343-383.
  16. Jonzen, N., Hedenström, A., Lundberg, P., 2007. Climate change and the optimal arrival of migratory birds, Proc. Biol. Sci. B 274, 269-274.
  17. Kim, M., Nam, H.-K., Kim, M.-H., Cho, K.-J., Kang, K.-K., Na, Y.-E., 2013. Status of birds using a rice paddy in south korea, Korean J. Environ. Agric. 32, 155-165.
  18. Kitaysky, A.S., Kitaiskaia, E.V., Piatt, J.F., Wingfield, J.C., 2003. Benefits and costs of increased levels of corticosterone in seabird chicks, Horm. Behav. 43, 140-149.
  19. Lack, D., 1968. Ecological adaptations for breeding in birds, pp. 1-34. Methuen, London.
  20. Lee, W.-S. 2012a. Effect of environmental stressors in stopover sites on the survival and re-migration using a dynamic-state-dependent model, Kor. J. Orni. 19, 277-291.
  21. Lee, W.-S. 2012b. Climate change and individual life history,. Ocean and Polar Res. 34, 275-286.
  22. Lee, W.-S. 2013. Effects of climate and human aquatic activity on early life-history traits in fish, Kor. J. Ecol. Envion. 46, 395-408.
  23. Lemoine, N., Boning-Gaese, K., 2003. Potential impact of global climate change on species richness of long-distance migrants, Conserv. Biol. 17, 577-586.
  24. Liu, Z., Zhong, S., Teng, Z. 2012. N species impulsive migration model with markovian switching,. J. Theor. Biol. 307, 62-69.
  25. Love, O.P., Williams, T.D., 2008. The adaptive value of stress-induced phenotypes: effects of maternally derived corticosterone on sex-biased investment, cost of reproduction, and maternal fitness, Am. Nat. 172, E135-149.
  26. Lumpkin, H.A., Pearson, S.M., In Press. Effects of exurban development and temperature on bird species in the Southern appalachians, Conserv. Biol.
  27. Matheworks, T., 2012 Matlab 2012b. Matheworks, Natick, MA.
  28. Mearns, L.O., Hulme, M., Carter, T.R., Leemans, R., Lal, M., Whetton, P., Hay, L., Jones, R.N., Katz, R., Kittel, T., Smith, J., Wilby, R., Mata, L.J., Zillman, J., 2001 Climate scenario development, in: Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A. (Edspp. 739-768),. In: Climate change 2001: the scitific basis (J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell and C.A. Johnson eds.). Cambridge University Press, Published Place, UK, pp. 739-768.
  29. Nishimura, K., Kishida, O. 2001. Coupling of two competitive systems via density dependent migration,. Ecol. Res. 16, 359-368.
  30. Møller, A.P., Fiedler, W., Berthold, P., 2010. Effects of climate change on birds, pp. 113-128, Oxford University Press, Oxford.
  31. Morison, J.I.L, Morecroft, M.D., 2006. Plant growth and climate change, pp. 12-25, Willey-Blackwell, London.
  32. Murray, J.D., 2003. Mathematical biology I: an introduction, pp. 79-114, Springer-Verlag, New York.
  33. Nam, H.-K., Choi, S.-H., Choi, Y.-S., Yoo, J.-C., 2012. Patterns of waterbirds abundance and habitat use in rice fields, Korean J. Environ. Agric. 31, 359-367.
  34. Nilsson, A.L.K., Sandell, M.I., 2009. Stress hormone dynamics: an adaptation to migration? Biol. Lett. 5, 480-483.
  35. Reed, T.E., Grotan, V., Jenouvrier, S., Saether, B., Visser, M.E., 2013. Population growth in a wild bird is buffered against phenological mismatch, Science 340, 488-491.
  36. Reich, P.B., Oleksyn, J., 2004. Global patterns of plant leaf N and P in relation to temperature and latitude, Proc. Natl. Acad. Sci. USA 101, 11001-11006.
  37. Richardson, W., 1978. Timing and amount of bird migration in relation to weather: a review, Oikos 30, 224-272.
  38. Rodway, M.S., Regehr, H.M., 1999. Habitat selection and reproductive performance of food-stressed herring gulls, Condor 101, 566-576.
  39. Roff, D.A., 2002. Life history evolution, pp. 93-150, Sinauer, Sunderland.
  40. Roger, P.A., 1991 Biodiversity and sustainability of wetland rice production: role and potential of microorganisms and invertebrates, Iin: Hawkswroth, D.L. (Ed), The biodiversity of microorganisms and invertebrates: its role in sustainable agriculture, CAB International, Oxford, UK, pp. 117-136.
  41. Saino, N., Ambrosini, R., Rubolini, D., von Hardenberg, J., Provenzale, A., Huppop, K., Huppop, O., Lehikoinen, A., Lehikoinen, E., Rainio, K., Romano, M., Sokolov, L., 2011. Climate warming, ecological mismatch at arrival and population decline in migratory birds, Proc. Biol. Sci. B 278, 835-842.
  42. Stafford, J.D., Kaminski, R.M., Reineche, K.J., 2010. Avian foods, foraging and habitat conservation in world rice fields, Waterbirds 33, 133-150.
  43. Su, P., Liao, X.L., Zhang, Y., Huang, H., 2012. Influencing factors on rice sheath blight epidemics in integrated rice-duck system, J. Integr. Agric. 11, 1462-1473.
  44. Trompeter, W.P., Langkilde, T., 2011. Invader danger: lizards faced with novel predators exhibit an altered behavioral response to stress, Horm. Behav. 60, 152-158.
  45. UNDP, 2010 Sustaibable rice production systems: scoping paper, pp. 1-20, United Nations Development Programme, New York.
  46. Wang, X.-S., Wu, J. 2012. Seasonal migration dynamics: periodicity, transition delay and finite-dimensional reduction,. Proc. R. Soc. A 468, 634-650.
  47. Xie, J., Hu, L.L., Tang, J.J., Wu, X., Li, N.N., Yuan, Y.G., Yang, H.S., Zhang, J.E., Luo, S.M., Chen, X., 2011. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system, Proc. Natl. Acad. Sci. USA 108, E1381-E1387.