Preparation of Ag/TiO2 Particle for Aerobic Benzyl Alcohol Oxidation

Aerobic Benzyl Alcohol Oxidation 반응용 Ag/TiO2 제조

  • Kim, Chang-Soo (Clean Energy Research Center, KIST) ;
  • Yoo, Kye Sang (Department of Chemical Engineering, Seoul National University of Science & Technology)
  • 김창수 (한국과학기술연구원 청정에너지연구센터) ;
  • 유계상 (서울과학기술대학교 화공생명공학과)
  • Received : 2013.08.22
  • Accepted : 2013.09.14
  • Published : 2013.12.10


$Ag/TiO_2$ particle was prepared using various ionic liquids by wet impregnation. The properties of the particles were significantly affected by the composition of ionic liquids. This is mainly attributed to different abilities of an ionic liquid to coordinate with the silver particle, leading to various coagulation of silver particles. The catalytic activity of the prepared samples was examined for the aerobic benzyl alcohol oxidation. Among the particles, $Ag/TiO_2$ prepared with 1-octyl-3-methylimidazolium tetrafluoroborate showed the best catalytic performance.


Supported by : 서울과학기술대학교


  1. R. A. Sheldon, I. Arends, and A. Dijksman, New developments in catalytic alcohol oxidations for fine chemicals synthesis, Catal. Today, 57, 157-166 (2000).
  2. R. A. Sheldon, I. W. C. E. Arends, G.-J. T. Brink, and A. Dijksman, Green, Catalytic Oxidations of Alcohols, Acc. Chem. Res., 35, 774-781 (2002).
  3. R. A. Sheldon and J. K. Kochi, Metal-Catalyzed Oxidation of Organic Compounds, Academic Press, New York (1981).
  4. R. V. Stevens, K. T. Chapman, and H. N. Weller, Convenient and inexpensive procedure for oxidation of secondary alcohols to ketones, J. Org. Chem., 45, 2030-2032 (1980).
  5. J. R. Holum, Study of the chromium (VI) oxide-pyridine complex, J. Org. Chem., 26, 4814-4816 (1961).
  6. D. G. Lee and U. A. Spitzer, Aqueous dichromate oxidation of primary alcohols, J. Org. Chem., 35, 3589-3590 (1970).
  7. R. J. Highet and W. C. Wildman, Solid Manganese Dioxide as an Oxidizing Agent, J. Am. Chem. Soc., 77, 4399-4401 (1955).
  8. F. M. Menger and C. Lee, Synthetically useful oxidations at solid sodium permanganate surfaces, Tetrahedron Lett., 22, 1655-1656 (1981).
  9. K. Yamaguchi, K. Mori, T. Mizugaki, K. Ebitani, and K. Kaneda, Creation of a monomeric Ru species on the surface of hydroxyapatite as an efficient heterogeneous catalyst for aerobic alcohol oxidation, J. Am. Chem. Soc., 122, 7144-7145 (2000).
  10. T. Nishimura, T. Onoue, K. Ohe, and S. Uemura, Palladium (II)-catalyzed oxidation of alcohols to aldehydes and ketones by molecular oxygen, J. Org. Chem., 64, 6750-6755 (1999).
  11. M. Hasan, M. Musawir, P. N. Davey, and I. V. Kozhevnikov, Oxidation of primary alcohols to aldehydes with oxygen catalysed by tetra-n-propylammonium perruthenate, J. Mol. Catal. A Chem., 180, 77-84 (2002).
  12. K. Mori, T. Hara, T. Mizugaki, K. Ebitani, and K. Kaneda, Hydroxyapatite-supported palladium nanoclusters : a highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen, J. Am. Chem. Soc., 126, 10657-10666 (2004).
  13. A. Abad, P. Concepcion, A. Corma, and H. Garcia, A collaborative effect between gold and a support induces the selective oxidation of alcohols, Angew. Chem. Int. Ed., 44, 4066-4069 (2005).
  14. W. Liu and M. Flytzani-Stephanopoulos, Cu-and Ag-modified cerium oxide catalysts for methane oxidation, J. Catal., 153, 304-316 (1995).
  15. A. Arcadi and S. D. Giuseppe, Recent applications of gold catalysis in organic synthesis, Curr. Org. Chem., 8, 795-812 (2004).
  16. Z. Q. Tian, B. Ren, and D. Y. Wu, Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures, J. Phys. Chem. B, 106, 9463-9483 (2002).
  17. P. Vonmatt and A. Pfaltz, Chiral Phosphinoaryldihydrooxazoles as Ligands in Asymmetric Catalysis : Pd‐Catalyzed Allylic Substitution, Angew. Chem. Int. Ed., 32, 566-568 (1993).
  18. D. Astruc, F. Lu, and J. R. Aranzaes, Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis, Angew. Chem. Int. Ed., 44, 7852-7872 (2005).
  19. M. Yoon, Y. Kim, V. Volkov, H. J. Song, Y. J. Park, and I. W. Park, Superparamagnetic properties of nickel nanoparticles in an ion-exchange polymer film, Mater. Chem. Phys., 91, 104-107 (2005).
  20. K. Mallick, M. J. Witcom, and M. S. Scurrell, Self-assembly of silver nanoparticles : formation of a thin silver film in a polymer matrix, Mater. Sci. Eng. C., 26, 87-91 (2006).
  21. S. He, J. Yao, P. Jiang, D. Shi, H. Zhang, S. Xie, S. Pang, and H. Gao, Formation of silver nanoparticles and self-assembled two-dimensional ordered superlattice, Langmuir, 17, 1571-1575 (2001).
  22. A. Manna, T. Imae, M. Iida, and N. Hisamatsu, Formation of silver nanoparticles from a N-hexadecylethylenediamine silver nitrate complex, Langmuir, 17, 6000-6004 (2001).
  23. Y. Sun and Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles, Science, 298, 2176-2179 (2002).
  24. E. Hao, K. L. Kelly, J. T. Hupp, and G. C. Schats, Synthesis of silver nanodisks using polystyrene mesospheres as templates, J. Am. Chem. Soc., 124, 15182-15183 (2002).
  25. M. Maillard, S. Gieorgio, and M. P. Pileni, Tuning the size of silver nanodisks with similar aspect ratios : synthesis and optical properties, J. Phys. Chem., B, 107, 2466-2470 (2003).
  26. P. Wasserscheid and W. Keim, Ionic liquids-new "solutions" for transition metal catalysis, Angew. Chem. Int. Ed., 39, 3773-3789 (2000).
  27. T. Welton, Room-temperature ionic liquids. Solvents for synthesis and catalysis, Chem. Rev., 99, 2071-2083 (1999).
  28. K. S. Yoo, Synthesis of submicron silver particle using room temperature ionic liquids, Appl. Chem. Eng., 23, 14-17 (2012).