Water Sorption Behaviors of Poly(Propylene Carbonate)/Exfoliated Graphite Nanocomposite Films

폴리프로필렌 카보네이트/박리흑연 나노복합필름의 수분흡수 거동

  • Kim, Dowan (Department of Packaging, Yonsei University) ;
  • Kim, Insoo (Department of Packaging, Yonsei University) ;
  • Seo, Jongchul (Department of Packaging, Yonsei University) ;
  • Han, Haksoo (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 김도완 (연세대학교 과학기술대학 패키징학과) ;
  • 김인수 (연세대학교 과학기술대학 패키징학과) ;
  • 서종철 (연세대학교 과학기술대학 패키징학과) ;
  • 한학수 (연세대학교 공과대학 화공생명공학과)
  • Received : 2013.07.15
  • Accepted : 2013.08.14
  • Published : 2013.12.10


In order to apply eco-friendly poly(propylene carbonate) (PPC) into barrier packaging materials, six different PPC/exfoliated graphite (EFG) nanocomposite films with different EFG were successfully prepared by a solution blending method. Their water sorption behavior was gravimetrically investigated as a function of the EFG content and interpreted with respect to their chemical structure and morphology. The water sorption isotherms were reasonably well fitted by Fickian diffusion model, regardless of morphological heterogeneities. With increasing the EFG content, the diffusion coefficient and water uptake decreased from $12.5{\times}10^{-10}cm^2sec^{-1}$ to $7.2{\times}10^{-10}cm^2sec^{-1}$ and from 8.9 wt% to 4.2 wt%, respectively, which indicates that the moisture resistance capacity of PPC was greatly enhanced by incorporating EFG into PPC. The enhanced water barrier property of the PPC/EFG nanocomposite films with the high aspect ratio EFG makes them potential candidates for versatile packaging applications. However, to maximize the performance of the nanocomposite films, further researches are required to increase the compatibility of EFG in the PPC matrix.


Supported by : 한국연구재단


  1. Y. Qin, X. Wang, and F. Wang, Recent advances in carbon dioxide based copolymer, Prog. Chem., 23, 613-622 (2011).
  2. Y. Qin and X. Wang, Carbon dioxide-based copolymers: Environmental benefits of PPC, an industrially viable catalyst, J. Biotech., 5, 1164-1180 (2010).
  3. R. Eberhardt, M. Allmendinger, and B. Rieger, DMAP/Cr(III) catalyst ratio: The decisive factor for poly(propylene carbonate) formation in the coupling of $CO_{2}$ and propylene oxide, Macromol. Rapid Comm., 24, 194-196 (2003).
  4. S. Inoue and T. Tsuruta, Synthesis and thermal degradation of carbon dioxide-epoxidecopolymer, Appl. Polym. Symp., 26, 257-267 (1975).
  5. B. Ochiaiand and T. Endo, Carbon dioxide and carbon disulfide as resources for functional polymers, Prog. Polym. Sci., 30, 183-215 (2005).
  6. G. A. Auinsra, Poly(Propylene Carbonate), old copolymersof propyleneoxide and carbon dioxidewith new Interests: Catalysis and materialproperties, Polym. Rev., 48, 192-219 (2008).
  7. S. Sujith, J. K. Min, J. E. Seong, S. J. Na, and B. Y. Lee, A Highly active and recyclable catalytic system for $CO_{2}$/propyleneoxide copolymerization, Angew. Chem. Int. Ed., 47, 7306-7309 (2008).
  8. X. Shi and Z. Gan, Preparation and characterization of poly(propylene carbonate)/montmorillonite nanocomposites by solution intercalation, Europ. Polym. J., 43, 4852-4858 (2007).
  9. Y. Lee, D. Kim, J. Seo, H. Han, and S. B. Khan, Preparation and characterization of poly(propylene carbonate)/exfoliated graphite nanocomposite films with improved thermal stability, mechanical properties and barrier properties, Polym. Int., 62, 1386-1394 (2013).
  10. G. A. Luinstra and E. Borchardt, Material properties of poly(propylenecarbonates), Adv. Polym. Sci., 245, 29-48 (2012).
  11. J. Yu, J. Yang, B. Liu, and X. Ma, Preparation and characterization of glycerol plasticized-pea starch/ZnO-carboxymethylcellulosesodium nanocomposites, Bioresour. Technol., 100, 2832-2841 (2009).
  12. S. K. Bajpai and C. N. Chaurasia, Investigation of water vapor permeability and antimicrobial property of zinc oxide nanoparticles- loaded chitosan-based edible film, J. Appl. Polym. Sci., 115, 674-683 (2010).
  13. S. M. E. Selke, J. D. Sem, J. D. Culter, and R. Z. Hernandez, Plastic Packaging; Properties, Processing, Applications, and Regulations. 78-350, Hanser Gardner Publication, Munich, Germany (2004).
  14. M. Xiao, L. Sun, J. J. Liu, Y. Li, and K. Gong, Synthesis and properties of polystyrene/graphite nanocomposites, Polymer, 43, 2245-2248 (2002).
  15. H. Kwon, D. Kim, J. Seo, and H. Han, Enhanced moisture barrier films based on EVOH/exfoliated graphite (EGn) nanocomposite films by solution blending, Macromol. Res., 21, 987-994 (2013).
  16. I. M. Afanasov, V. Morozov, A. Kepman, S. Ionov, and A. Seleznev, Preparation, electrical and thermal properties of new exfoliated graphite-based composites, Carbon, 47, 263-270 (2009).
  17. A. Nigrawal and N. Chand, Electrical and thermal investigations on exfoliated graphite filled epoxygradient composites, Malaysian Polym. J., 5, 130-139 (2010).
  18. K. Wakabayashi, P. J. Brunner, J. Masuda, S. A. Hewlett, and J. M. Torkelson, Polypropylene-graphite nanocomposites made by solid-state shear pulverization: Effects of significantly exfoliated, unmodified graphite content on physical, mechanical and electrical properties, Polymer, 51, 5525-5531 (2010).
  19. E. J. Lee, J. S. Yoon, and E. S. Park, Morphology, resistivity, and thermal behavior of EVOH/carbon black and EVOH/graphite composites prepared by simple saponification method, Polym. Compos., 32, 714-726 (2011).
  20. J. M. Lagaron and E. Nunez, Nanocomposites of moisture-sensitive polymers and biopolymers with enhanced performance for flexible packaging applications, J. Plast. Film Sheet., 28, 79-89 (2012).
  21. T. V. Ducan, Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors, J. Coll. Interf. Sci., 363, 1-24 (2011).
  22. W. Gu, W. Zhang, X. Li, H. Zhu, J. Wei, Z. Li, Q. Shu, C. Wang, K. Wang, W. Shen, F. Kang, and D. Wu, Graphene sheets from worm-like exfoliated graphite, J. Mater. Chem., 19, 3367-3369 (2009).
  23. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, 457, 706-710 (2009).
  24. H. Kim, A. A. Abdala, and C. W. Macosko, Graphene/polymer nanocomposites, Macromolecules, 43, 6515-6530 (2010).
  25. J. Wang, X. Wang, C. Xu, M. Zhang, and X. Shang, Preparation of graphene/poly(vinyl alcohol) nanocomposites with enhanced mechanical properties and water resistance, Polym. Int., 60, 816-822 (2010).
  26. J. R. Potts, D. R. Dreyer, C. W. Bielawski, and R. S. Ruoff, Graphene-based polymer nanocomposites, Polymer, 52, 5-25 (2011).
  27. J. Crank, The Mathematics of Diffusion, Clarendon Press, Oxford, UK (1976).
  28. J. Crank and G. S. Park, Diffusion in Polymers, Academic Press, London, UK (1968).
  29. D. W. van Krevelen, Properties of Polymers 3rd Ed. Elseviers Science Publishing Com., Amsterdam, Nederland (1990).
  30. J. Seo, C. Han, and H. Han, Water-sorption behaviors of poly(3,4'- oxydiphenylene pyromellitimide) films depending on the thickness variation, J. Polym. Sci. Polym. Phys., 39, 669-676 (2001).<669::AID-POLB1041>3.0.CO;2-#