DOI QR코드

DOI QR Code

Study on the Aerodynamic Analysis for Wings with Various Shapes Using Lifting-line Methods

양력선 방법을 이용한 다양한 형상의 날개 공력해석에 관한 연구

  • Lee, Chang Ho (Aerodynamics Team, Korea Aerospace Research Institute) ;
  • Kang, Hyung Min (Aerodynamics Team, Korea Aerospace Research Institute) ;
  • Kim, Cheolwan (Aerodynamics Team, Korea Aerospace Research Institute)
  • Received : 2013.09.09
  • Accepted : 2013.11.22
  • Published : 2013.12.01

Abstract

In this paper, we try to find the lifting-line method which is applicable to the conceptual design of aircraft wings, and analyze the accuracy and coverage of the method. Two methods that are extended from the lifting-line theory of Prandtl are selected. One of the methods is Weissinger's method which imposes the velocity boundary condition at the control points located at the quarter chord, and the other is Phillips's method which combines the three-dimensional vortex lifting law. Calculations are performed for an elliptic wing, a swept back wing, and a tapered unswept wing with dihedral angle and geometric twist. The aerodynamic data of the potential flow such as spanwise distributions of circulation and downwash, lift and induced drag are obtained through calculations, and these data are compared with theoretical results and wind tunnel test data. As a result, Weissinger's method showed good accuracy and reliability regardless of wing shapes, but Phillips's method revealed inaccurate results for a swept back wing.

본 논문에서는 항공기 날개의 개념 설계에서 적용하기에 적합한 양력선 방법을 찾고 정확성과 적용범위를 분석한다. Prandtl의 양력선 이론에서 발전된 두 가지 양력선 방법으로서 얇은 익형의 가정을 갖고 3/4 시위의 제어점에서 속도경계조건을 부여하는 Weissinger방법과 3차원 와류 양력법칙을 적용한 Phillips의 방법을 택하였다. 계산 대상은 타원형 날개, 후퇴각이 있는 날개, 그리고 상반각과 비틀림이 있고 후퇴각 없는 테이퍼 날개이다. 계산을 통해 포텐셜 유동의 공력 데이터로 날개의 순환분포, 내리흐름 분포, 양력과 유도항력을 추출하여 이론식 결과 및 풍동시험 데이터와 비교하였다. Weissinger 방법은 날개의 형상에 상관없이 정확도와 신뢰성 있는 결과를 보여주지만 Phillips 방법은 후퇴각이 있는 날개에서는 부정확한 결과를 나타내었다.

Keywords

Acknowledgement

Supported by : 산업통상자원부

References

  1. Anderson, J. D., Fundamentals of Aerodynamics, McGraw-Hill, New York, 1991.
  2. Bertin, J. J., and Smith, M. L., Aerodynamics for Engineers, Prentice-Hall International Editions, 1989.
  3. Katz, J., and Plotkin, A., Low-Speed Aerodynamics, McGraw-Hill, 1991.
  4. Weissinger, J., "The Lift Distribution of Swept-Back Wings," NACA TM-1120, 1947.
  5. Anderson, J. D., Corda, S., and Van Wie, D. M., "Numerical Lifting Line Theory Applied to Drooped Leading Edge Wings Below and Above Stall," Journal of Aircraft, Vol. 17, No. 12, 1980, pp. 898-904. https://doi.org/10.2514/3.44690
  6. Rasmussen, M. L., and Smith, D. E., "Lifting-Line Theory for Arbitrarily Shaped Wings," Journal of Aircraft, Vol. 36, No. 2, 1999, pp. 340-348. https://doi.org/10.2514/2.2463
  7. Phillips, W. F., and Snyder, D. O., "Modern Adaptation of Prandtl's Classic Lifting-Line Theory," Journal of Aircraft, Vol. 37, No. 4, 2000, pp. 662-670. https://doi.org/10.2514/2.2649
  8. Jacobs, R. B., Ran, H., Kirby, M. R., and Mavris, D. N., "Extension of a Modern Lifting Line Method to Transonic Speeds and Application to Multiple Lifting Surface Configurations," AIAA Paper 2012-2889, 2012.
  9. Schneider, W. C., "A Comparison of the Spanwise Loading Calculated by Various Methods with Experimental Loadings Obtained on a $45^{\circ}$ Sweptback Wing of Aspect Ratio 8.02 at a Reynolds Number of 4x106," NACA TR -1208, 1952.
  10. Sivells, J. C., "Experimental and Calculated Characteristics of Three Wings of NACA 64-210 and 65-210 Airfoil Sections," NACA TN-1422, 1947.