DOI QR코드

DOI QR Code

Quantitative Speciation of Selenium in Human Blood Serum and Urine with AE- RP- and AF-HPLC-ICP/MS

  • Received : 2013.08.16
  • Accepted : 2013.10.15
  • Published : 2013.12.20

Abstract

Various separation modes in HPLC, such as anion exchange (AE), reversed-phase (RP), and affinity (AF) chromatography were examined for the separation of selenium species in human blood serum and urine. While RP- and AE-HPLC were mainly used for the separation of small molecular selenium species, double column AF-HPLC achieved the separation of selenoproteins in blood serum efficiently. Further, the effluent of AF-HPLC was enzymatically hydrolyzed and then analyzed with RP HPLC for selenoamino acid study. The versatility of the hybrid technique makes the in-depth study of selenium species possible. For quantification, post column isotope dilution (ID) with $^{78}Se$ spike was performed. ORC ICP/MS (octapole reaction cell inductively coupled plasma/mass spectrometry) was used with 4 mL $min^{-1}$ Hydrogen as reaction gas. In urine sample, inorganic selenium and SeCys were identified. In blood serum, selenoproteins GPx, SelP and SeAlb were detected and quantified. The concentration for GPx, SelP and SeAlb was $22.8{\pm}3.4\;ng\;g^{-1}$, $45.2{\pm}1.7\;ng\;g^{-1}$, and $16.1{\pm}2.2\;ng\;g^{-1}$, respectively when $^{80}Se/^{78}Se$ was used. The sum of these selenoproteins ($84.1{\pm}4.4\;ng\;g^{-1}$) agrees well with the total selenium concentration measured with the ID method of $87.0{\pm}3.0\;ng\;g^{-1}$. Enzymatic hydrolysis of each selenium proteins revealed that SeCys is the major amino acid for all three proteins and SeMet is contained in SeAlb only.

Keywords

Selenium speciation;Seleno-proteins;HPLC-ICP/MS;Blood serum;Post column isotope dilution

References

  1. Tolu, J.; Hecho, I. L.; Bueno, M.; Thiry, Y.; Potin-Gautier, M., Anal. Chim. Acta 2011, 684, 126-133. https://doi.org/10.1016/j.aca.2010.10.044
  2. Pyrzynska, K. Microchim. Acta 2002, 140, 55-62. https://doi.org/10.1007/s00604-001-0899-8
  3. Chen, Y. W.; Belzile, N. Anal. Chim. Acta 2010, 671, 9-26. https://doi.org/10.1016/j.aca.2010.05.011
  4. Giusti, P.; Schaumloffel, D.; Preud'homme, H.; Szpunar, J.; Lobinski, R. J. Anal. At. Spectrom. 2006, 21, 26-32. https://doi.org/10.1039/b511288e
  5. Duan, J.; Hu, B. J. Mass Spectrom. 2009, 44, 605-612. https://doi.org/10.1002/jms.1533
  6. B'Hymer, C.; Caruso, J. A. J. Chromatogr. A 2006, 1114, 1-20. https://doi.org/10.1016/j.chroma.2006.02.063
  7. Emteborg, H.; Bordin, G.; Rodriguez, A. R. Analyst 1998, 123, 245-253. https://doi.org/10.1039/a705967a
  8. Harwood, J. J.; Su, W. J. Chromatogr. A 1997, 788, 105-111. https://doi.org/10.1016/S0021-9673(97)00706-1
  9. Mazej, D.; Falnoga, I.; Veber, M.; Stibilj, V. Talanta 2006, 68, 558-568. https://doi.org/10.1016/j.talanta.2005.04.056
  10. Dietz, C.; Landaluze, J. S.; Ximenez-Embun, P.; Madrid-Albarran, Y.; Camara, C. J. Anal. At. Spectrom. 2004, 19, 260-266. https://doi.org/10.1039/b308544a
  11. Shrivas, K.; Patel, D. K. Food Chem. 2011, 124, 1673-1677. https://doi.org/10.1016/j.foodchem.2010.07.054
  12. Ordonez, Y. N.; Montes-Bayon, M.; Blanco-Gonzalez, E.; Sanz-Medel, A. Anal. Chem. 2010, 82, 2387-2394. https://doi.org/10.1021/ac902624b
  13. Zoorob, G. K.; McKiernan, J. W.; Caruso, J. A. Mikrochim. Acta 1998, 128, 145-168. https://doi.org/10.1007/BF01243044
  14. Montes-Bayon, M.; DeNicola, K.; Caruso, J. A. J. Chromatogr. A 2003, 1000, 457-476. https://doi.org/10.1016/S0021-9673(03)00527-2
  15. Reyes, H. L.; Garcia-Ruiz, S.; Tonietto, B. G.; Godoy, J. M.; Alonso, J. I. G.; Sanz-Medel, A. J. Braz. Chem. Soc. 2009, 30, 1878-1886.
  16. Rappel, C.; Schaumloffel, D. Anal. Chem. 2009, 81, 385-393. https://doi.org/10.1021/ac801814a
  17. Diaz Huerta, V.; Fernandez Sanchez, M. L.; Sanz-Medel, A. J. Anal. At. Spectrom. 2004, 19, 644-651. https://doi.org/10.1039/b313826g
  18. Pedrero, Z.; Madrid, Y. Analytica Chimica Acta 2009, 634, 135-152. https://doi.org/10.1016/j.aca.2008.12.026
  19. Andoh, M.; Hirashima, H.; Maeda, K.; Hata, O.; Inatomi, T.; Tsujikawa, M.; Sasaki, K.; Takahashi, Y,; Fujiyama, Y. Nutrition 2005, 21, 573-581.
  20. Jitaru, P.; Goenaga-Infante, H.; Vaslin-Reimann, S.; Fisicaro, P. Anal. Chim. Acta 2010, 657, 100-107. https://doi.org/10.1016/j.aca.2009.10.037
  21. Suzuki, Y.; Sakai, T.; Furuta, N. Anal. Sci. 2012, 28, 1-5. https://doi.org/10.2116/analsci.28.1
  22. Jitaru, P.; Cozzi, G.; Gambaro, A.; Cescon, P.; Barbante, C. Anal. Bioanal. Chem. 2008, 391, 661-668. https://doi.org/10.1007/s00216-008-2043-7
  23. Jitaru, P.; Cozzi, G.; Seraglia, R.; Traldi, P.; Cescon, P.; Barbante, C. Anal. Methods 2010, 2, 1382-1387. https://doi.org/10.1039/c0ay00173b
  24. Jitaru, P.; Prete, M.; Cozzi, G.; Turetta, C.; Cairns, W.; Seraglia, R.; Traldi, P.; Cescon, P.; Barbante, C. J. Anal. At. Spectrom. 2008, 23, 402-406. https://doi.org/10.1039/b712693j
  25. Rodriguez-Gonzalez, P.; Marchante-Gayon, J. M.; Alonso, J. I. G.; Sanz-Medel, A. Spectrochim. Acta B 2005, 60, 151-207. https://doi.org/10.1016/j.sab.2005.01.005
  26. Wallschlager, D.; London, J. J. Anal. At. Spectrom. 2004, 19, 1119-1127. https://doi.org/10.1039/b401616e
  27. Roman, M.; Jitaru, P.; Agostini, M.; Cozzi, G.; Pucciarelli, S.; Nitti, D.; Bedin, C.; Barbante, C. Michrochem. Journal 2012, 105, 124-132. https://doi.org/10.1016/j.microc.2012.02.004
  28. Kotrebai, M.; Tyson, J. F.; Block, E.; Uden, P. C. J. Chromatogr. A 2000, 866, 51-63. https://doi.org/10.1016/S0021-9673(99)01060-2
  29. Bierla, K.; Szpunar, J.; Lobinski, R. Anal. Chim. Acta 2008, 624, 195-202. https://doi.org/10.1016/j.aca.2008.06.052
  30. Afton, S.; Kubachka, K.; Catron, B.; Caruso, J. A. J. Chromatogr. A 2008, 1208, 156-163. https://doi.org/10.1016/j.chroma.2008.08.077
  31. Kuehnelt, D.; Kienzl, N.; Juresa, D.; Kevin, A. F. J. Anal. At. Spectrom. 2006, 21, 1264-1270. https://doi.org/10.1039/b607670j
  32. Stewart, I. I. Spectrochim. Acta B 1999, 54, 1649-1659. https://doi.org/10.1016/S0584-8547(99)00110-X
  33. Rosenberg, E. J. Chromatogr. A 2003, 1000, 841-889. https://doi.org/10.1016/S0021-9673(03)00603-4
  34. Yang, X.; Tian, Y.; Ha, P.; Gu, L. Wei Sheng Yan Jiu 1997, 26, 13-16.
  35. Reyes, H.; Marchante, L.; Gayon, J. M.; Garcia Alonso, J. I.; Sanz-Medel, A. J. Anal. At. Spectrom. 2003, 18, 1210-1216. https://doi.org/10.1039/b305455a
  36. Cho, H.; Pak, Y. J. Korean Chem. Soc. 2011, 55, 472-477. https://doi.org/10.5012/jkcs.2011.55.3.472

Cited by

  1. Quantification of seleno proteins in Korean blood serum using solid phase extraction and affinity chromatography-inductively coupled plasma/mass spectrometry vol.27, pp.2, 2014, https://doi.org/10.5806/AST.2014.27.2.92
  2. Study of improving precision and accuracy by using an internal standard in post column isotope dilution method for HPLC-ICP/MS vol.27, pp.3, 2014, https://doi.org/10.5806/AST.2014.27.3.140
  3. Speciation analysis of selenium in human urine by liquid chromatography and inductively coupled plasma mass spectrometry for monitoring of selenium in body fluids vol.27, pp.3, 2015, https://doi.org/10.1080/09542299.2015.1107502
  4. Analysis of selenoaminoacids and selenoproteins in blood serum of sows fed by selenium fortified feed vol.28, pp.3, 2015, https://doi.org/10.5806/AST.2015.28.3.196
  5. A study of relationship between stomach cancer and selenoproteins in Korean human blood serum vol.28, pp.6, 2015, https://doi.org/10.5806/AST.2015.28.6.417
  6. Atomic spectrometry update: review of advances in the analysis of clinical and biological materials, foods and beverages vol.30, pp.3, 2015, https://doi.org/10.1039/C5JA90001H
  7. Improvement of Accuracy for the Quantitation of Selenoproteins in Post-Column Isotope Dilution Technique with HPLC ICP/MS vol.37, pp.11, 2016, https://doi.org/10.1002/bkcs.10987
  8. Collision Gas in Isotope Dilution for the Analysis of Se with Octopole Reaction Cell Inductively Coupled Plasma-Mass Spectrometry vol.38, pp.12, 2017, https://doi.org/10.1002/bkcs.11312
  9. as a Collision Gas vol.39, pp.8, 2018, https://doi.org/10.1002/bkcs.11529