DOI QR코드

DOI QR Code

Structural, Electrochemical, DNA Binding and Cleavage Properties of Nickel(II) Complex [Ni(H2biim)2(H2O)2]2+ of 2,2'-Biimidazole

  • Jayamani, Arumugam ;
  • Thamilarasan, Vijayan ;
  • Ganesan, Venketasan ;
  • Sengottuvelan, Nallathambi
  • Received : 2013.07.11
  • Accepted : 2013.09.21
  • Published : 2013.12.20

Abstract

A nickel(II) complex $[Ni(H_2biim)_2(H_2O)_2](ClO_4)_2{\cdot}H_2O$ (1) of biimidazole ligand has been synthesized and characterized (Where $H_2biim$ = 2,2'-biimidazole). The single crystal X-ray diffraction of the complex shows a dimeric structure with six coordinated psudo-octahedral geometry. The cyclic voltammograms of complex exhibited one quasireversible reduction wave ($E_{pc}=-0.61V$) and an irreversible oxidation wave ($E_{pa}=1.28V$) in DMF solution. The interaction of the complex with Calf-Thymus DNA (CT-DNA) has been investigated by absorption and fluorescence spectroscopy. The complex is an avid DNA binder with a binding constant value of $1.03{\times}10^5M^{-1}$. The results suggest that the nickel(II) complex bind to CT-DNA via intercalative mode and can quench the fluorescence intensity of EB bind to CT-DNA with $K_{app}$ value of $3.2{\times}10^5M^{-1}$. The complex also shown efficient oxidative cleavage of supercoiled pBR322 DNA in the presence of hydrogen peroxide as oxidizing agent. The DNA cleavage by complex in presence of quenchers; viz. DMSO, KI, $NaN_3$ and EDTA reveals that hydroxyl radical or singlet oxygen mechanism is involved. The complex showed invitro antimicrobial activity against four bacteria and two fungi. The antimicrobial activity was nearer to that of standard drugs and greater than that of the free ligand.

Keywords

Nickel(II) complex;Electrochemical studies;DNA binding and cleavage studies;Anti-microbial activity

References

  1. Dasgupta, D.; Majumder, P.; Banerjee, A. J. Biosci. 2012, 37, 475. https://doi.org/10.1007/s12038-012-9211-9
  2. Vaidyanathan, V. G.; Nair, B. U. J. Inorg. Biochem. 2002, 91, 405. https://doi.org/10.1016/S0162-0134(02)00448-8
  3. Ye, B. H.; Ding, B. B.; Weng, Y. Q.; Chen, X. M. Cryst. Growth Des. 2005, 5, 801. https://doi.org/10.1021/cg049742k
  4. Ding, B. B.; Weng, Y. Q.; Mao, Z. W.; Lam, C. K.; Chen, X. M.; Ye, B. H. Inorg. Chem. 2005, 44, 8836. https://doi.org/10.1021/ic051195k
  5. Tadokoro, M.; Nakasuji, K. Coord. Chem. Rev. 2000, 198, 218.
  6. Sang, R. L.; Zhu, M. L.; Yang, P. Acta Cryst. 2002, 58, m172.
  7. Collier, H. L. Korea polymer J. 1997, 5, 179.
  8. Biswas, R.; Drew, M. G. B.; Ghosh, A. Inorg. Chem. Commun. 2012, 24, 1. https://doi.org/10.1016/j.inoche.2012.07.023
  9. Nakamoto, K.; In Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed.; John Wiley & Sons: New York, 1986.
  10. Halcrow, M. A.; Christou, G. Chem. Rev. 1994, 94, 2421. https://doi.org/10.1021/cr00032a008
  11. Stavropoulos, P.; Muetterties, M. C.; Carrie, M.; Holm, R. H. J. Am. Chem. Soc. 1991, 113, 8485. https://doi.org/10.1021/ja00022a041
  12. Tucci, G. C.; Holm, R. H. J. Am. Chem. Soc. 1995, 117, 6489. https://doi.org/10.1021/ja00129a011
  13. Mukherjee, P.; Drew, M. G. P.; Estrader, M.; Ghosh, A. Inorg. Chem. 2008, 47, 784. https://doi.org/10.1021/ic701914m
  14. Yang, L. F.; Cao, M. L.; Mo, H. J.; Hao, H. G.; Wu, J. J.; Zhang, J. P.; Ye, B. H. CrystEngComm 2009, 11, 1114. https://doi.org/10.1039/b819646j
  15. Qiu, Q. M.; Deng, Y. H.; Sun, J. J.; Yang, W.; Jin, Q. H.; Zhang, C. L. Z. Kristallogr. 2011, 226, 625.
  16. Zhang, Y.; Li, J.; Lin, W.; Liu, S.; Huang, J. J. Crystallogr. Spectrosc. Res. 1992, 22, 434.
  17. Angela, K.; Lucica, A. V.; Nicoleta, C.; Ileana, R.; Nicolae, S. J. Serb. Chem. Soc. 2011, 75, 229.
  18. Reddy, P. R.; Shilpa, A. Ind. J. Chem. 2010, 49, 1003.
  19. Kulaksizoglu, S.; Gokce, C.; Gup, R. Turk. J. Chem. 2012, 36,717.
  20. Zhong, Y. R.; Cao, M. L.; Mo, H. J.; Ye B. H. Cryst. Growth Design 2008, 8, 2282. https://doi.org/10.1021/cg700980v
  21. Hui, Z. Acta Cryst. 2009, E65, m1497.
  22. Mighell, A. D.; Reimann, C. W.; Mauer, F. A. Acta Cryst. 1969, B25, 60.
  23. Carranza, J.; Sletten, J.; Lloret, F.; Julve, M. Polyhedron 2009, 28, 2249. https://doi.org/10.1016/j.poly.2009.04.001
  24. Wang, Q. W.; Xu, Y. Y.; Xu, Z.-L.; Wang, J. J. Z. Kristallogr. 2009, 224, 157.
  25. Akkawi, M.; Aljazzar, A.; Haj, M. A.; Remeleh, Q. A. Br. J. Pharmacol. Toxicol. 2012, 3, 65.
  26. Bu, X. H.; Zhang, Z. H.; Cao, X. C.; Zhu, Z. A.; Chen, Y. T. Trans. Met. Chem. 1997, 22, 1. https://doi.org/10.1023/A:1018581214840
  27. Grochala, W.; Jagielska, A.; Wozniak, K.; Wieckowska, A., Bilewicz, R.; Daszkiewicz, B. K.; Bukowska, J.; Piela, L. J. Phys. Org. Chem. 2001, 14, 63. https://doi.org/10.1002/1099-1395(200102)14:2<63::AID-POC328>3.0.CO;2-W
  28. Choi, K. Y.; Kim, M. J.; Kim, D. S.; Kim, Y. S.; Kim, J. H.; Ryu, H.; Lim, Y. M.; Kang, S. G.; Shin, U. S.; Lee, K. C.; Hong, C. P. Bull. Korean Chem. Soc. 2002, 23, 1062. https://doi.org/10.5012/bkcs.2002.23.8.1062
  29. Choi, K. Y.; Lee, H. H.; Park, B. B.; Kim, J. H.; Kim, J.; Kim, M. W.; Ryu, J. W.; Suh, M.; Suh, I. H. Polyhedron 2001, 20, 2003. https://doi.org/10.1016/S0277-5387(01)00801-4
  30. Khan, S.; Nami, S. A. A.; Siddiqi, K. S.; Husain, E.; Naseem, I. Spectrochim. Acta Part A 2009, 72, 421. https://doi.org/10.1016/j.saa.2008.10.001
  31. Li, Y.; Wu, Y.; Zhao, J.; Yang, P. J. Inorg. Biochem. 2007, 101, 283. https://doi.org/10.1016/j.jinorgbio.2006.10.004
  32. Peng, B.; Chao, H.; Sun, B.; Li, H.; Gao, F.; Ji, L. N. Inorg. Biochem. 2006, 100, 1487. https://doi.org/10.1016/j.jinorgbio.2006.04.008
  33. Nair, R. B.; Teng, E. S.; Kirkland, S. L.; Murphy, C. J. Inorg. Chem. 1998, 37, 139. https://doi.org/10.1021/ic970432j
  34. Dong, X.; Wang, X.; Lin, M.; Sun, H.; Yang, X.; Guo, Z. Inorg. Chem. 2010, 49, 2541. https://doi.org/10.1021/ic100001x
  35. Lakowicz, J. R.; Weber, G. Biochemistry 1973, 12, 4161. https://doi.org/10.1021/bi00745a020
  36. Nagasubramanian, S.; Thamilarasan, V.; Jayamani, A.; Kang, S. K.; Kim, Y.-I.; Sengottuvelan, N. Bull. Korean Chem. Soc. 2013, 34, 1875. https://doi.org/10.5012/bkcs.2013.34.6.1875
  37. Li, Y.; Wu, Y.; Zhao, J.; Yang, P. J. Inorg. Biochem. 2007, 101, 283. https://doi.org/10.1016/j.jinorgbio.2006.10.004
  38. Baguley, B. C.; Bret, M. L. Biochemistry 1984, 23, 937. https://doi.org/10.1021/bi00300a022
  39. Srivastava, R. S. Inorg. Chim. Acta 1981, 56, 65. https://doi.org/10.1016/S0020-1693(00)88534-5
  40. Park, K.-J.; Kwon, J. H.; Cho, T.-S., Kim, J. M.; Hwang, I. H.; Kim, C.; Kim, S.; Kim, J.; Kim, S. K. J. Inorg. Biochem. 2013, 127, 46. https://doi.org/10.1016/j.jinorgbio.2013.06.007
  41. Ryter, S. W.; Tyrrell, R. M. Free Radic. Biol. Med. 1998, 24, 1520. https://doi.org/10.1016/S0891-5849(97)00461-9
  42. Kim, J. M.; Kim, S. K. Bull. Korean Chem. Soc. 2011, 32, 3.
  43. Joseyphus, R. S.; Nair, M. S. Mycobiol. 2008, 36, 93. https://doi.org/10.4489/MYCO.2008.36.2.093