DOI QR코드

DOI QR Code

Exploring the Utility of Partial Cytochrome c Oxidase Subunit 1 for DNA Barcoding of Gobies

  • Received : 2012.09.23
  • Accepted : 2012.10.20
  • Published : 2012.10.31

Abstract

Gobiids are hyperdiverse compared with other teleost groups, with about 2,000 species occurring in marine, freshwater, and blackish habitats, and they show a remarkable variety of morphologies and ecology. Testing the effectiveness of DNA barcodes on species that have emerged as a result of radiation remains a major challenge in evolutionary biology. Here, we used the cytochrome c oxidase subunit 1 (COI) sequences from 144 species of gobies and related species to evaluate the performance of distance-based DNA barcoding and to conduct a phylogenetic analysis. The average intra-genus genetic distance was considerably higher than that obtained in previous studies. Additionally, the interspecific divergence at higher taxonomic levels was not significantly different from that at the intragenus level, suggesting that congeneric gobies possess substantial interspecific sequence divergence in their COI gene. However, levels of intragenus divergence varied greatly among genera, and we do not provide sufficient evidence for using COI for cryptic species delimitation. Significantly more nucleotide changes were observed at the third codon position than that at the first and the second codons, revealing that extensive variation in COI reflects synonymous changes and little protein level variation. Despite clear signatures in several genera, the COI sequences did resolve genealogical relationships in the phylogenetic analysis well. Our results support the validity of COI barcoding for gobiid species identification, but the utilization of more gene regions will assist to offer a more robust gobiid species phylogeny.

Acknowledgement

Grant : Korean Tree of Life, 4th Year: Gobioidei Fishes

Supported by : National Institute of Biological Resources

References

  1. Akihito A, Iwata T, Kobayashi T, Ikeo K, Imanishi T, Ono H, Umehara Y, Hamamatsu C, Sugiyama K, Ikeda Y, Sakamoto K, Fumihito A, Ohno S, Gojobori T, 2000. Evolutionary aspects of gobioid fishes based upon a phylogenetic analysis of mitochondrial cytochrome b genes. Gene, 259:5-15. https://doi.org/10.1016/S0378-1119(00)00488-1
  2. April J, Mayden RL, Hanner RH, Bernatchez L, 2011. Genetic calibration of species diversity among North America's freshwater fishes. Proceedings of the National Academy of Sciences United States of America, 108:10602-10607. https://doi.org/10.1073/pnas.1016437108
  3. Aquilino SVL, Tango JM, Fontanilla IKC, Pagulayan RC, Basiao ZU, Ong PS, Quilang JP, 2011. DNA barcoding of the ichthyofauna of Taal Lake, Philippines. Molecular Ecology Resources, 11:612-619. https://doi.org/10.1111/j.1755-0998.2011.03000.x
  4. Aquino LMG, Tango JM, Canoy RJC, Fontanilla IKC, Basiao ZU, Ong PS, Quilang JP, 2011. DNA barcoding of fishes of Laguna de Bay, Philippines. Mitochondrial DNA, 22:143- 153. https://doi.org/10.3109/19401736.2011.624613
  5. Avise JC, Ellis D, 1986. Mitochondrial DNA and the evolutionary genetics of higher animals. Philosophical Transactions of the Royal Society of London Series B Biological Sciences, 312:325-342. https://doi.org/10.1098/rstb.1986.0011
  6. Brown WM, George M Jr, Wilson AC, 1979. Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States America, 76:1967- 1971. https://doi.org/10.1073/pnas.76.4.1967
  7. Che J, Chen HM, Yang JX, Jin JQ, Jiang K, Yuan ZY, Murphy RW, Zhang YP, 2012. Universal COI primers for DNA barcoding amphibians. Molecular Ecology Resources, 12: 247-258. https://doi.org/10.1111/j.1755-0998.2011.03090.x
  8. Clare EL, Lim BK, Engstrom MD, Eger JL, Hebert PDN, 2007. DNA barcoding of Neotropical bats: species identification and discovery within Guyana. Molecular Ecology Notes, 7: 184-190. https://doi.org/10.1111/j.1471-8286.2006.01657.x
  9. Ebach MC, Holdrege C, 2005. More taxonomy, not DNA barcoding. BioScience, 55:822-823. https://doi.org/10.1641/0006-3568(2005)055[0822:TT]2.0.CO;2
  10. Feng Y, Li Q, Kong L, Zheng X, 2011. COI-based DNA barcoding of Arcoida species (Bivalvia: Pteriomorphia) along the coast of China. Molecular Ecology Resources, 11:435-441. https://doi.org/10.1111/j.1755-0998.2010.02975.x
  11. Hall TA, 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symposium Series, 41:95-98.
  12. Harada S, Jeon SR, Kinoshita I, Tanaka M, Nishda M, 2002. Phylogenetic relationships of four species of floating gobies (Gymnogobius) as inferred from partial mitochondrial cytochrome b gene sequences. Ichthyological Research, 49:324- 332. https://doi.org/10.1007/s102280200048
  13. Hebert PDN, Cywinska A, Ball SL, DeWaard JR, 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences, 270:313-321. https://doi.org/10.1098/rspb.2002.2218
  14. Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM, 2004. Identification of birds through DNA barcodes. PLoS Biology, 2:e312. https://doi.org/10.1371/journal.pbio.0020312
  15. Herler J, Munday PL, Hernaman V, 2011. Gobies on coral reefs. In: The biology of gobies (Eds., Patzner RA, van Tassell JL, Kovacic M, Kapoor BG). Science Publishers, New York, pp. 493-530.
  16. Hubert N, Hanner R, Holm E, Mandrak NE, Taylor E, Burridge M, Watkinson D, Dumont P, Curry A, Bentzen P, Zhang J, April J, Bernatchez L, 2008. Identifying Canadian freshwater fishes through DNA barcodes. PLoS ONE, 3:e2490. https://doi.org/10.1371/journal.pone.0002490
  17. Hubert N, Meyer CP, Bruggemann HJ, Guerin F, Komeno RJL, Espiau B, Causse R, Williams JT, Planes S, 2012. Cryptic diversity in Indo-Pacific coral-reef fishes revealed by DNAbarcoding provides new support to the centre-of-overlap hypothesis. PLoS ONE, 7:e28987. https://doi.org/10.1371/journal.pone.0028987
  18. Huelsenbeck JP, 1997. Is the Felsenstein zone a fly trap? Systematic Biology, 46:69-74. https://doi.org/10.1093/sysbio/46.1.69
  19. Ivanova NV, Zemlak TS, Hanner RH, Hebert PDN, 2007. Universal primer cocktails for fish DNA barcoding. Molecular Ecology Notes, 7:544-548. https://doi.org/10.1111/j.1471-8286.2007.01748.x
  20. Johns GC, Avise JC, 1998. A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b gene. Molecular Biology and Evolution, 15:1481- 1490. https://doi.org/10.1093/oxfordjournals.molbev.a025875
  21. Kawanabe H, Mizuno N, 1989. Freshwater fishes of Japan. Yamatokeikokusha, Tokyo, pp. 1-719.
  22. Keith P, Lord C, Lorion J, Watanabe S, Tsukamoto K, Couloux A, Dettai A, 2011. Phylogeny and biogeography of Sicydiinae (Teleostei: Gobiidae) inferred from mitochondrial and nuclear genes. Marine Biology, 158:311-326. https://doi.org/10.1007/s00227-010-1560-z
  23. Kim JB, 1995. The studies of speciation and systematics on the fishes of the genera Rhinogobius and Tridentiger (Perciformes, Gobiidae) in Korea. PhD dissertation, Inha University, Incheon, Korea, pp. 1-158.
  24. Kimura M, 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16: 111-120. https://doi.org/10.1007/BF01731581
  25. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG, 2007. Clustal W and Clustal X version 2.0. Bioinformatics, 23:2947-2948. https://doi.org/10.1093/bioinformatics/btm404
  26. Larson HK, 2001. A revision of the gobiid fish genus Mugilogobius (Teleostei: Gobioidei), and its systematic placement. Records of the Western Australian Museum, Supplement 62:1-233. https://doi.org/10.18195/issn.0313-122x.62.2001.001-233
  27. Leray M, Boehm JT, Mills SC, Meyer CP, 2012. Moorea BIOCODE barcode library as a tool for understanding predatorprey interactions: insights into the diet of common predatory coral reef fishes. Coral Reefs, 31:383-388. https://doi.org/10.1007/s00338-011-0845-0
  28. Moore WS, 1995. Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees. Evolution, 49:718-726. https://doi.org/10.2307/2410325
  29. Murdy EO, 1989. A taxonomic revision and cladistic analysis of the oxudercine gobies (Gobiidae: Oxudercinae). Records of the Australian Museum, Supplement, 11:1-93. https://doi.org/10.3853/j.0812-7387.11.1989.93
  30. Nei M, Gojobori T, 1986. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Molecular Biology and Evolution, 3:418-426.
  31. Nei M, Kumar S, 2000. Molecular evolution and phylogenetics. Oxford University Press, Oxford, pp. 1-352.
  32. Nelson JS, 2006. Fishes of the world. 4th ed. John Wiley and Sons, Hoboken, NJ, pp. 1-601.
  33. Parenti LR, Thomas KR, 1998. Pharyngeal jaw morphology and homology in sicydiine gobies (Teleostei: Gobiidae) and allies. Journal of Morphology, 237:257-274. https://doi.org/10.1002/(SICI)1097-4687(199809)237:3<257::AID-JMOR4>3.0.CO;2-W
  34. Pezold F, 1993. Evidence for a monophyletic Gobiinae. Copeia, 1993:634-643. https://doi.org/10.2307/1447224
  35. Posada D, Crandall KA, 1998. Modeltest: testing the model of DNA substitution. Bioinformatics, 14:817-818. https://doi.org/10.1093/bioinformatics/14.9.817
  36. Ronquist F, Huelsenbeck JP, 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19:1572-1574. https://doi.org/10.1093/bioinformatics/btg180
  37. Roques S, Fox CJ, Villasana MI, Rico C, 2006. The complete mitochondrial genome of the whiting, Merlangius merlangus and the haddock, Melanogrammus aeglefinus: a detailed genomic comparison among closely related species of the Gadidae family. Gene, 383:12-23. https://doi.org/10.1016/j.gene.2006.06.018
  38. Steinke D, Zemlak TS, Hebert PDN, 2009. Barcoding nemo: DNA-based identifications for the ornamental fish trade. PLoS ONE, 4:e6300. https://doi.org/10.1371/journal.pone.0006300
  39. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S, 2011. MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28:2731-2739. https://doi.org/10.1093/molbev/msr121
  40. Thacker CE, 2003. Molecular phylogeny of the gobioid fishes (Teleostei: Perciformes: Gobioidei). Molecular Phylogenetics and Evolution, 26:354-368. https://doi.org/10.1016/S1055-7903(02)00361-5
  41. Thacker CE, 2009. Phylogeny of Gobioidei and placement within Acanthomorpha, with a new classification and investigation of diversification and character evolution. Copeia, 2009: 93-104. https://doi.org/10.1643/CI-08-004
  42. Thacker CE, Hardman MA, 2005. Molecular phylogeny of basal gobioid fishes: Rhyacichthyidae, Odontobutidae, Xenisthmidae, Eleotridae (Teleostei: Perciformes: Gobioidei). Molecular Phylogenetics and Evolution, 37:858-871. https://doi.org/10.1016/j.ympev.2005.05.004
  43. Thacker CE, Schaefer SA, 2000. Phylogeny of the wormfishes (Teleostei: Gobioidei: Microdesmidae). Copeia, 2000:940- 957. https://doi.org/10.1643/0045-8511(2000)000[0940:POTWTG]2.0.CO;2
  44. Thacker CE, Thompson AR, Roje DM, 2011. Phylogeny and evolution of Indo-Pacific shrimp-associated gobies (Gobiiformes: Gobiidae). Molecular Phylogenetics and Evolution, 59:168-176. https://doi.org/10.1016/j.ympev.2011.02.007
  45. Tornabene L, Baldwin C, Weigt LA, Pezold F, 2010. Exploring the diversity of western Atlantic Bathygobius (Teleostei: Gobiidae) with cytochrome c oxidase-I, with descriptions of two new species. Aqua Journal of Ichthyology and Aquatic Biology, 16:141-170.
  46. Triantafyllidis A, Bobori D, Koliamitra C, Gbandi E, Mpanti M, Petriki O, Karaiskou N, 2011. DNA barcoding analysis of fish species diversity in four north Greek lakes. Mitochodrial DNA, 22:37-42. https://doi.org/10.3109/19401736.2010.542242
  47. Wang HY, Tsai MP, Dean J, Lee SC, 2001. Molecular phylogeny of gobioid fishes (Perciformes: Gobioidei) based on mitochondrial 12S rRNA sequences. Molecular Phylogenetics and Evolution, 20:390-408. https://doi.org/10.1006/mpev.2001.0957
  48. Ward RD, Holmes BH, 2007. An analysis of nucleotide and amino acid variability in the barcode region of cytochrome c oxidase I (cox1) in fishes. Molecular Ecology Notes, 7:899- 907. https://doi.org/10.1111/j.1471-8286.2007.01886.x
  49. Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN, 2005. DNA barcoding Australia's fish species. Philosophical Transactions of the Royal Society of London Series B Biological Sciences, 360:1847-1857. https://doi.org/10.1098/rstb.2005.1716
  50. Weigt LA, Baldwin CC, Driskell A, Smith DG, Ormos A, Reyier EA, 2012. Using DNA barcoding to assess Caribbean reef fish biodiversity: expanding taxonomic and geographic coverage. PLoS ONE, 7:e41059. https://doi.org/10.1371/journal.pone.0041059
  51. Will KW, Mishler BD, Wheeler QD, 2005. The perils of DNA barcoding and the need for integrative taxonomy. Systematic Biology, 54:844-851. https://doi.org/10.1080/10635150500354878
  52. Yamada T, Sugiyama T, Tamaki N, Kawakita A, Kato M, 2009. Adaptive radiation of gobies in the interstitial habitats of gravel beaches accompanied by body elongation and excessive vertebral segmentation. BMC Evolutionary Biology, 9:145. https://doi.org/10.1186/1471-2148-9-145
  53. Zander CD, 2011. Morphological adaptation to special environments of gobies. In: The biology of gobies (Eds., Patzner RA, van Tassell JL, Kovacic M, Kapoor BG). Science Publishers, New York, pp. 345-366.

Cited by

  1. DNA barcoding of gobiid fishes (Perciformes, Gobioidei) vol.26, pp.1, 2015, https://doi.org/10.3109/19401736.2013.834438
  2. Genetic structure of intertidal shimofuri goby in the Zhejiang Coastal Sea, China: implications for management pp.1867-1624, 2018, https://doi.org/10.1007/s12526-018-0878-5