Visual Perception Dynamics of Relative Phase Coordination Pattern with Additional Visual Information Using a Background Grid

상대위상을 이용한 시각적 협응 패턴의 지각 역학과 격자무늬를 이용한 부가적 감각 정보에 따른 영향

  • Ryu, Young-Uk (Department of Physical Therapy, Catholic University of Daegu)
  • 류영욱 (대구가톨릭대학교 의료과학대학 물리치료학과)
  • Received : 2012.09.10
  • Accepted : 2012.09.24
  • Published : 2012.09.30


The purpose of the present study was to examine if perception of visual coordination pattern is consistent with the prediction of the HKB model (Haken, Kelso, Bunz, 1985). In addition, this study aimed to see if an additional sensory information using a grid background stabilizes perception of coordination pattern. Participants joined one of two experimental groups, Normal background and Grid background, to participate the pattern recognition training session and the pattern judgment test session. Participants observed $0^{\circ}$, $18^{\circ}$, $36^{\circ}$, $54^{\circ}$, $72^{\circ}$, $90^{\circ}$, $108^{\circ}$, $126^{\circ}$, $144^{\circ}$, $162^{\circ}$, and $180^{\circ}$ coordination patterns characterized by two oscillating dots. The dots oscillated in 0.25 Hz for the pattern recognition training and in 0.5 Hz, 1 Hz, and 2 Hz for the pattern judgment test. Judgment score, absolute judgment error, and judgment stability out of the pattern judgment test were analyzed statistically. The landscape of pattern accuracy and stability data was "inverted-U" shape with slower oscillating frequency conditions. In the faster condition, the accuracy and stability of the judgment decreased with relative phase patterns near $180^{\circ}$. These findings consistent with the prediction of the HKB model. The grid as additional sensory information did not increase accuracy and stability in coordination perception.


Visual perception;Coordination;Perceptual dynamics;HKB model


Supported by : 한국연구재단