DOI QR코드

DOI QR Code

Effects of Dietary Fat Types on Growth Performance, Pork Quality, and Gene Expression in Growing-finishing Pigs

  • Park, J.C. (Swine Science Division, National Institute of Animal Science, Rural Development Administration) ;
  • Kim, S.C. (Division of Animal Genomics & Bioinformatics, National Institute of Animal Science, Rural Development Administration) ;
  • Lee, S.D. (Swine Science Division, National Institute of Animal Science, Rural Development Administration) ;
  • Jang, H.C. (Division of Animal Genomics & Bioinformatics, National Institute of Animal Science, Rural Development Administration) ;
  • Kim, N.K. (Division of Animal Genomics & Bioinformatics, National Institute of Animal Science, Rural Development Administration) ;
  • Lee, S.H. (Division of Animal Genomics & Bioinformatics, National Institute of Animal Science, Rural Development Administration) ;
  • Jung, H.J. (Swine Science Division, National Institute of Animal Science, Rural Development Administration) ;
  • Kim, I.C. (Swine Science Division, National Institute of Animal Science, Rural Development Administration) ;
  • Seong, H.H. (Division of Animal Genomics & Bioinformatics, National Institute of Animal Science, Rural Development Administration) ;
  • Choi, Bong-Hwan (Division of Animal Genomics & Bioinformatics, National Institute of Animal Science, Rural Development Administration)
  • Received : 2012.08.03
  • Accepted : 2012.09.04
  • Published : 2012.12.01

Abstract

This study was performed to determine the effects of dietary fat sources, i.e., beef tallow, soybean oil, olive oil and coconut oil (each 3% in feed), on the growth performance, meat quality and gene expression in growing-finishing pigs. A total of 72 crossbred pigs (Landrace${\times}$Large White${\times}$Duroc) were used at $71{\pm}1$ kg body weight (about 130 d of age) in 24 pens ($320{\times}150$ cm) in a confined pig house (three pigs per pen) with six replicate pens per treatment. The growing diet was given for periods of $14{\pm}3$ d and the finishing diet was given for periods of $28{\pm}3$ d. The fat type had no significant effect either on growth performance or on chemical composition or on meat quality in growing-finishing pigs. Dietary fat type affected fatty acid composition, with higher levels of unsaturated fatty acids (UFAs) and monounsaturated fatty acids (MUFAs) in the olive oil group. Microarray analysis in the Longissimus dorsi identified 6 genes, related to insulin signaling pathway, that were differentially expressed among the different feed groups. Real time-PCR was conducted on the six genes in the longissimus dorsi muscle (LM). In particular, the genes encoding the protein kinase, cAMP-dependent, regulatory, type II, alpha (PRKAR2A) and the catalytic subunit of protein phosphatase 1, beta isoform (PPP1CB) showed the highest expression level in the olive oil group (respectively, p<0.05, p<0.001). The results of this study indicate that the type of dietary fat affects fatty acid composition and insulin signaling-related gene expression in the LM of pigs.

Keywords

Dietary Fat;Fatty Acid;Gene Expression;Growing-finishing Pig;Insulin Signaling Pathway

References

  1. Andersen, H. J., N. Oksbjerg, J. F. Young and M. Therkildsen. 2005. Feeding and meat quality - a future approach. Meat Sci. 70:543-554. https://doi.org/10.1016/j.meatsci.2004.07.015
  2. AOAC, 1990. Official methods of analysis, 15th ed. Assoc. Off. Anal. Chem., Washington, DC, USA.
  3. Cera, K. R., D. C. Mahan and G. A. Reinhart. 1988. Effects of dietary dried whey and corn oil on weanling pig performance, fat digestibility and nitrogen utilization. J. Anim. Sci. 66: 1438-1445. https://doi.org/10.2527/jas1988.6661438x
  4. Cera, K. R., D. C. Mahan and G. A. Reinhart. 1989. Apparent fat digestibilities and performance responses of postweaning swine fed diets supplemented with coconut oil, corn oil or tallow. J. Anim. Sci. 67:2040-2047. https://doi.org/10.2527/jas1989.6782040x
  5. Cera, K. R., D. C. Mahan and G. A. Reinhart. 1990. Evaluation of various extracted vegetable oils, roasted soybeans, medium-chain triglyceride and an animal-vegetable fat blend for postweaning swine. J. Anim. Sci. 68:2756-2765. https://doi.org/10.2527/1990.6892756x
  6. Cohen, P. T. W. 1997. Novel protein serine/threonine phosphatases: Variety is the spice of life. Trends Biochem. Sci. 22:245-251. https://doi.org/10.1016/S0968-0004(97)01060-8
  7. Corino, C., S. Magni, E. Pagliarini, R. Rossi, G. Pastorelli and L. M. Chiesa. 2002. Effects of dietary fats on meat quality and sensory characteristics of heavy pig loins. Meat Sci. 60:1-8. https://doi.org/10.1016/S0309-1740(01)00095-X
  8. De la Llata, M., S. S. Dritz, M. D. Tokach, R. D. Goodband, J. L. Nelssen and T. M. Loughin. 2001. Effects of dietary fat on growth performance and carcass characteristics of growing-finishing pigs reared in a commercial environment. J. Anim. Sci. 79:2643-2650. https://doi.org/10.2527/2001.79102643x
  9. Dougherty, R., C. Galli, A. Ferro-Luzzi and J. Iacono. 1987. Lipid and phospholipid fatty acid composition of plasma, red blood cells, and platelets and how they are affected by dietary lipids: a study of normal subjects from Italy, Finland, and the USA. Am. J. Clin. Nutr. 45:443-455. https://doi.org/10.1093/ajcn/45.2.443
  10. Eder, K., G. Müller, H. Kluge, F. Hirche and C. Brandsch. 2005. Concentrations of oxysterols in meat and meat products from pigs fed diets differing in the type of fat (palm oil or soybean oil) and vitamin E concentrations. Meat Sci. 70:15-23. https://doi.org/10.1016/j.meatsci.2004.11.016
  11. Ewan, R. C. 1970. Effect of protein quality on fat utilization by baby pigs. J. Anim. Sci. 31:1020. (Abstr).
  12. Folch, J., M. Lees and G. H. Sloane-Stanley. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226:497-509.
  13. Food Standards Agency. 1991. Fats and oils. McCance & Widdowson's the Composition of Foods. Royal Society of Chemistry.
  14. Hemmings, B. A., M. Schwarz, S. Rao Adavani and D. A. Jans. 1986. Expression cloning of a cDNA encoding the type II regulatory subunit of the cAMP-dependent protein kinase. FEBS Lett. 209:219-222. https://doi.org/10.1016/0014-5793(86)81114-0
  15. Honikel, K. O. 1998. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 49:447-457. https://doi.org/10.1016/S0309-1740(98)00034-5
  16. Howard, K. A., D. M. Forsyth and T. R. Cline. 1990. The effect of an adaptation period to soybean oil additions in the diets of young pigs. J. Anim. Sci. 68:678-683. https://doi.org/10.2527/1990.683678x
  17. Jorgensen, H., V. M. Gabert, M. S. Hedemann and S. K. Jensen. 2000. Digestion of fat does not differ in growing pigs fed Diets containing fish oil, rapeseed oil or coconut oil. J. Nutr. 130: 852-857. https://doi.org/10.1093/jn/130.4.852
  18. Jauregui, H., N. Hayner, J. Driscoll, R. Williams-Holland, M. Lipsky and P. Galletti. 1981. Trypan blue dye uptake and lactate dehydrogenase in adult rat hepatocytes-Freshly isolated cells, cell suspensions, and primary monolayer cultures. In Vitro Cellular & Developmental Biology - Plant 17:1100-1110. https://doi.org/10.1007/BF02618612
  19. Kiritsakis, A. 1999. Composition of olive oil and its nutritional and health effect. In: Proceeding of the 10th International Rapeseed Congress, Canberra, Australia, 205-209.
  20. Kitamura, T., Y. Kitamura, S. Kuroda, Y. Hino, M. Ando, K. Kotani, H. Konishi, H. Matsuzaki, U. Kikkawa, W. Ogawa and M. Kasuga. 1999. Insulin-induced phosphorylation and activation of cyclic nucleotide phosphodiesterase 3B by the serine-threonine kinase Akt. Mol. Cell. Biol. 19:6286-6296. https://doi.org/10.1128/MCB.19.9.6286
  21. Li, D. F., R. C. Thaler, J. L. Nelssen, D. L. Harmon, G. L. Allee and T. L. Weeden. 1990. Effect of fat sources and combinations on starter pig performance, nutrient digestibility and intestinal morphology. J. Anim. Sci. 68:3694-3704. https://doi.org/10.2527/1990.68113694x
  22. McDonald, B. E. and R. M. G. Hamilton. 1976. Growth and carcass composition of pigs fed diets that contained rapeseed oil, soybean oil or tallow during the growing period. Can. J. Anim. Sci. 56:671-680. https://doi.org/10.4141/cjas76-080
  23. Mitchaothai, J., C. Yuangklang, S. Wittayakun, K. Vasupen, S. Wongsutthavas, P. Srenanul, R. Hovenier, H. Everts and A. C. Beynen. 2007. Effect of dietary fat type on meat quality and fatty acid composition of various tissues in growing-finishing swine. Meat Sci. 76:95-101. https://doi.org/10.1016/j.meatsci.2006.10.017
  24. Mountzouris, K. C., K. Fegeros and G. Papadopoulos. 1999. Utilization of fats based on the composition of sow milk fat in the diet of weanling pigs. Anim. Feed Sci. Technol. 77:115-124. https://doi.org/10.1016/S0377-8401(98)00242-9
  25. Noblet, J., H. Fortune, X. S. Shi and S. Dubois. 1994. Prediction of net energy value of feeds for growing pigs. J. Anim. Sci. 72: 344-354. https://doi.org/10.2527/1994.722344x
  26. NRC. 1998. Nutrient requirements of swine. 10th ed. National Academy Press, Washington, DC, USA.
  27. Overland, M., M. D. Tokach, S. G. Cornelius, J. E. Pettigrew and J. W. Rust. 1993. Lecithin in swine diets: I. Weanling pigs. J. Anim. Sci. 71:1187-1193. https://doi.org/10.2527/1993.7151187x
  28. Powles, J., J. Wiseman, D. J. A. Cole and B. Hardy. 1993. Effect of chemical structure of fats upon their apparent digestible energy value when given to growing/finishing pigs. Anim. Sci. 57:137-146. https://doi.org/10.1017/S000335610000670X
  29. Powles, J., J. Wiseman, D. J. A. Cole and B. Hardy. 1994. Effect of chemical structure of fats upon their apparent digestible energy value when given to young pigs. Anim. Sci. 58:411-417. https://doi.org/10.1017/S0003356100007364
  30. Scheeder, M. R. L., K. R. Gläser, B. Eichenberger and C. Wenk. 2000. Influence of different fats in pig feed on fatty acid composition of phospholipids and physical meat quality characteristics. Eur. J. Lipid Sci. Technol. 102:391-401. https://doi.org/10.1002/1438-9312(200006)102:6<391::AID-EJLT391>3.0.CO;2-1
  31. Seerley, R. W., J. P. Briscoe and H. C. McCampbell. 1978. A comparison of poultry and animal fat on performance, body composition and tissue lipids of swine. J. Anim. Sci. 46:1018-1023. https://doi.org/10.2527/jas1978.4641018x
  32. Seiquer, I., E. Martinez-Victoria, M. Mañas, J. R. Huertas, M. C. Ballesta and F. J. Mataix. 1996. Long term effects on lipid metabolism in miniature swine (Sus scrofa) of diets enriched in saturated, monounsaturated and polyunsaturated (n-6 and n-3) fatty acids. Arch. Physiol. Biochem. 104:20-29. https://doi.org/10.1076/apab.104.1.20.12869
  33. Spencer, J. D., A. M. Gaines, E. P. Berg and G. L. Allee. 2005. Diet modifications to improve finishing pig growth performance and pork quality attributes during periods of heat stress. J. Anim. Sci. 83:243-254. https://doi.org/10.2527/2005.831243x
  34. Suchankova, G., M. Tekle, A. K. Saha, N. B. Ruderman, S. D. Clarke and T. W. Gettys. 2005. Dietary polyunsaturated fatty acids enhance hepatic AMP-activated protein kinase activity in rats. Biochem. Biophys. Res. Commun. 326:851-858. https://doi.org/10.1016/j.bbrc.2004.11.114
  35. Sun, D., X. Zhu, S. Qiao, S. Fan and D. Li. 2004. Effects of conjugated linoleic acid levels and feeding intervals on performance, carcass traits and fatty acid composition of finishing barrows. Arch. Anim. Nutr. 58:277-286. https://doi.org/10.1080/00039420412331273286
  36. Teye, G. A., P. R. Sheard, F. M. Whittington, G. R. Nute, A. Stewart and J. D. Wood. 2006. Influence of dietary oils and protein level on pork quality. 1. Effects on muscle fatty acid composition, carcass, meat and eating quality. Meat Sci. 73: 157-165. https://doi.org/10.1016/j.meatsci.2005.11.010
  37. Tokach, M. D., J. E. Pettigrew, L. J. Johnston, M. Overland, J. W. Rust and S. G. Cornelius. 1995. Effect of adding fat and(or) milk products to the weanling pig diet on performance in the nursery and subsequent grow-finish stages. J. Anim. Sci. 73: 3358-3368. https://doi.org/10.2527/1995.73113358x
  38. Van Deckel, M. J., M. Casteels, N. Warnants, L. Van Damme and C. V. Boucqué. 1996. Omega-3 fatty acids in pig nutrition: Implications for the intrinsic and sensory quality of the meat. Meat Sci. 44:55-63. https://doi.org/10.1016/S0309-1740(96)00077-0
  39. Walker, W. A. and G. Blackburn. 2004. Symposium introduction: Nutrition and gene regulation. J. Nutr. 134:2434S-2436S. https://doi.org/10.1093/jn/134.9.2434S
  40. Ways, P. and D. J. Hanahan. 1964. Characterization and quantification of red cell lipids in normal man. J. Lipid Res. 5: 318-328.
  41. Wong, R. H. F. and H. S. Sul. 2010. Insulin signaling in fatty acid and fat synthesis: a transcriptional perspective. Curr Opin Pharmacol. 10:684-691. https://doi.org/10.1016/j.coph.2010.08.004
  42. Wood, J. D. 1984. Fat deposition and the quality of fat tissue in meat animals. Fats in Animal Nutrition, 407-435 (Ed. J. Wiseman). London: Butterworths.
  43. Wood, J. D., M. Enser, A. V. Fisher, G. R. Nute, R. I. Richardson and P. R. Sheard. 1999. Manipulating meat quality and composition. Proc. Nutr. Soc. 58:363-370. https://doi.org/10.1017/S0029665199000488
  44. Yin, J. and D. Li. 2009. Nutrigenomics Approach - A strategy for identification of nutrition responsive genes influencing meat edible quality traits in swine. Asian-Aust. J. Anim. Sci. 22: 605-610. https://doi.org/10.5713/ajas.2009.r.05

Cited by

  1. Transcriptomics and the Mediterranean Diet: A Systematic Review vol.9, pp.5, 2017, https://doi.org/10.3390/nu9050472
  2. TRIENNIAL LACTATION SYMPOSIUM: Nutrigenomics in livestock: Systems biology meets nutrition1 vol.93, pp.12, 2015, https://doi.org/10.2527/jas.2015-9225
  3. Analysis of porcine body size variation using re-sequencing data of miniature and large pigs vol.19, pp.1, 2018, https://doi.org/10.1186/s12864-018-5009-y
  4. Functional analysis finds differences on the muscle transcriptome of pigs fed an n-3 PUFA-enriched diet with or without antioxidant supplementations vol.14, pp.2, 2019, https://doi.org/10.1371/journal.pone.0212449