Verification of CDOM Algorithms Based on Ocean Color Remote Sensing Data in the East Sea

동해에서 해색센서를 이용한 CDOM추정 알고리즘 검증

  • Kim, Yun-Jung (Department of Oceanography, Pukyong National University) ;
  • Kim, Hyun-Cheol (Division of Polar Climate Research, Korea Polar Research Institute) ;
  • Son, Young-Baek (Korea Ocean Satellite Center (KOSC), KIOST) ;
  • Park, Mi-Ok (Department of Oceanography, Pukyong National University) ;
  • Shin, Woo-Chur (Department of Oceanography, Pukyong National University) ;
  • Kang, Sung-Won (Department of Oceanography, Pukyong National University) ;
  • Rho, Tae-Keun (Marine Research Institute/Department of Oceanography, Pusan National University)
  • 김윤정 (부경대학교 해양학과) ;
  • 김현철 (극지연구소 극지기후연구부) ;
  • 손영백 (한국해양과학기술원 해양위성센터) ;
  • 박미옥 (부경대학교 해양학과) ;
  • 신우철 (부경대학교 해양학과) ;
  • 강성원 (부경대학교 해양학과) ;
  • 노태근 (부산대학교 해양연구소/해양학과)
  • Received : 2012.07.15
  • Accepted : 2012.08.13
  • Published : 2012.08.31


Colored Dissolved Organic Matter (CDOM) is one of the important components of optical properties of seawater to determine ecosystem dynamics in a given marine area. The optical characteristics of CDOM may depend on the various ecosystem and environmental variables in the sea and those variables may vary region to region. Therefore, the retrieval algorithm for determining light absorption coefficient of CDOM ($a_{CDOM}$) using satellite remote sensing reflectance ($R_{rs}$) developed from other region may not be directly applicable to the other region, and it must be validated using an in-situ ground-truth observation. We have tested 6 known CDOM algorithms (three Semi-analytical and three Empirical CDOM algorithms) developed from other regions of the world ocean with laboratory determined in-situ values for the East Sea using field data collected during seven oceanographic cruises in the period of 2009~2011. Our field measurements extended from the coastal waters to the open oceanic type CASE-1 Waters. Our study showed that Quasi-Analytical Algorithm (QAA_v5) derived $a_{CDOM}$(412) appears to match in-situ $a_{CDOM}$(412) values statistically. Semi-analytical algorithms appeared to underestimate and empirical ones overestimated $a_{CDOM}$ in the East Sea. $a_{CDOM}$(412) value was found to be relatively high in the relatively high satellite derived-chlorophyll-a area. $a_{CDOM}$(412) value appears to be influenced by the amount of chlorophyll-a in seawater. The outcome of this work may be referenced to develop $a_{CDOM}$ algorithm for the new Korean Geostationary Ocean Color Imager (GOCI).


  1. 문정언, 유주형, 안유환, 민지은, 최중기, 2008. 한반도 주변 해역에서 용존유기물의 흡광계수(adom)연구, 한국해양학회추계포스터발표.
  2. 문정언, 안유환, 유주형, P. Shanmugam, 2010. 정지 궤도 해색탑재체(GOCI) 해수환경분석 알고리즘 개발, 대한원격탐사학회지, 26(2): 189-207.
  3. 홍기훈, 안유환, 손영백, 유주형, 김창준, 양동범, 김영일, 저창수, 2011. MODIS를 이용한 춘.하계 동해 서남부 해역의 해수 중 입자성 유기탄소 함량 추정 알고리즘 개선, 대한원격탐사학회지, 27(2): 107-120.
  4. Ahn, Y.H., P. Shanmugam, J.E. Moon, and J.H. Ryu, 2008. Satellite remote sensing of a low-salinity water plume in the East China Sea, Annales Geophysicae, 26: 2019-2035.
  5. Biddanda, B. and R. Benner, 1997. Carbon, nitrogen, and carbohydrate fluxed during the production of particulate and dissolved organic matter by marine phytoplankton, Limnology and Oceanography, 42(3): 506-518.
  6. Blough, N.V. and R.D. Vecchio, 2002. Chromophoric DOM in the Coastal Environment, In "Biogeochemistry of Marine Dissolved Organic Matter" (D. A Hansell and C. A. Carlson, Eds.), Academic Press, San Diego.
  7. Carder, K.l., S.K. Hawes, K.A. Baker, R.C. Smith, R.G. Steward, and B.G. Mitchell, 1991. Reflectance model for quantifying chlorophyll a in the presence of productivity degradation products, Journal of Geophysical Research, 104(C3): 20599-20611.
  8. Carder, K.L., F.R. Chen, J.P. Cannizzaro, J.W. Campbell, and B.G. Mitchell, 2004. Performance of the MODIS semi-analytical ocean color algorithm for chlorophyll-a, Advances in Space Research, 33(7): 1152-1159.
  9. Carder, K.L., F.R. Chen, Z.P. Lee, S.K. Hawes, and D. Kamykowski, 1999. Semianalytic Moderate Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio optical domains based on nitrate-depletion temperatures, Journal of Geophysical Research, 104(C3): 5403-5421.
  10. Garver, S.A. and D.A. Siegel, 1997. Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation 1. Times series from the Sargasso Sea, Journal of Geophysical Research, 102(C8): 18607-18625.
  11. Gordon, H.R. and A. Morel, 1983. Remote assessment of ocean color for interpretation of satellite visible imagery: a review, In: Lecture Notes on Coastal and Estuarine Studied, edited by Barker, R.T., N.K. Mooers, M.J. Bowman and B. Zeitzschel, Springer-Verlag, New York.
  12. Gibson, J.A.E., W.F. Vincent, B. Nieke, and R. Pienitz, 2000. Control of biological exposure to UV radiation in the Arctic Ocean: Comparison of the roles of ozone and riverine dissolved organic matter, Arctic, 53(4): 372-382.
  13. Hessen, D.O., K. Nygaard, K. Salonen, and A. Vähätalo, 1994. The effect of substrate stoichiometry of microbial activity and carbon degradation in humic lakes, Environment International, 20(1): 67-76.
  14. Hochman, H., J.J. Walsh, K.L. Carder, A. Sournia, and F.E. M?ller-Karger, 1995. Analysis of ocean color components within stratified and well-mixed waters of the western English channel, Journal of Geophysical Research, 100(C6): 10777-10787.
  15. Hoge, F.E., M.E. Williams, P.E. Lyon, R.N. Swift, and J.K. Yungel, 1999. Satellite retrieval of inherent optical properties by inversion of an oceanic radiance model: A preliminary algorithm, Applied optics, 38(3): 495-504.
  16. IOCCG, 2006. Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications, Reports of the International Ocean-Colour Coordinating Group, 5: 7-103.
  17. Kahru, M. and B.G. Mitchell, 2001. Seasonal and nonseasonal variability of satellite-derived chlorophyll and dissolved organic matter concentration in the California Current, Journal of Geophysical Research, 106(C2): 2517-2529.
  18. Lee, Z.P., K.L. Carder, and R. Arnone, 2002. Deriving inherent optical properties from water color: A multi-band quasi-analytical algorithm for optically deep waters, Applied Optics, 41(21): 5755-5772.
  19. Lee, Z.P., K.P. Du, and R. Arnone, 2005. A model for the diffuse attenuation coefficient of downwelling irradiance, Journal of Geophysical Research, 110, C02016, doi:10.1029/2004JC002275.
  20. Lee, Z.P., L. Bertrand, W. Jeremy, and A. Robert, 2009. An Update of the Quasi-Analytical Algorithm(QAA_v5).
  21. Mannino, A., M.E. Russ, and S.B. Hooker, 2008. Algorithm development and validation for satellite-derived distributions of DOC and CDOM in the U.S. Middle Atlantic Blight, Journal of Geophysical Research, 113, C07051, doi:10.1029/JC004493.
  22. Maritorena, S., D.A. Siegel, and A.R. Peterson, 2002. Optimization of a semianalytical ocean color model for global-scale applications, Applied Optics, 41(15): 2705-2714.
  23. McAllister, C.D., T.R. Parsons, K. Stephens, and J.D.H. Strickland, 1961. Measurements of primary production in coastal sea water using a large-volume plastic sphere, Limnology and Oceanography, 6(3): 237-258.
  24. McClain, C.R., G.C. Feldman, and S.B. Hooker, 2004. An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series, Deep-sea Research II: Topical Studies in Oceanography, 51(1-3):5-42.
  25. Mitchell, B.G., A. Bricaud, K. Carder, J. Cleveland, G. Ferrari, R. Gould, M. Kahru, M. Kishino, H. Maske, T. Moisan, L. Moore, N. Nelson, D. Phinney, R. Reynolds, H. Sosik, D. Stramski, S. Tassan, C. Trees, A. Weidemann, J. Wieland, and A. Vodacek, 2000. Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples, In : Ocean optics protocols for satellite ocean color sensor validation, revision2. Ed. By G.S. Fargion and J.L. Mueller, NASA.TM-2000-209966.
  26. Morel, A., 1988. Optical modeling of the upper ocean in relation to its biogenous matter contents (Case I Waters), Journal of Geophysical Research, 93(C9): 10749-10768.
  27. Morel, A. and L. Prieur, 1977. Analysis of variations in ocean color. Limnology and Oceanography, 22(4): 709-722.
  28. Morel, A. and S. Maritorena, 2001. Bio-optical properties of oceanic waters: A reappraisal, Journal of Geophysical Research, 106(C4): 7163-7180.
  29. Moran, M.A., W.M. Sheldon, and R.G. Zepp, 2000. Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter, Limnology and Oceanography, 45(6): 1254-1264.
  30. Morris, D.P. and B.R. Hargreaves, 1997. The role of photochemical degradation of dissolved organic carbon in regulation the UV transparency of three lakes on the Pocono Plateau, Limnology and Oceanography, 42(2): 239-249.
  31. Nelson, N.B., D.A. Siegel, and A.F. Michaels, 1998. Seasonal dynamics of colored dissolved material in the Sargasso Sea, Deep-Sea Research Part I: Oceanographic Research Papers, 45(6): 931-957.
  32. Nelson, N.B. and D.A. Siegel, 2002. Chromophoric DOM in the Open Ocean. In "Biogeochemistry of Marine Dissolved Organic Matter" (D.A Hansell and C.A. Carlson, Eds.), Academic Press, San Diego.
  33. O'Reilly, J.E., S. Maritorena, B.G. Mitchell, D.A. Siegel, K.L. Carder, S.A. Gaver, M. Kahru, and C. McClain, 1998. Ocean color chlorophyll algorithms for SeaWiFS. Journal of Geophysical Research, 103(C11): 24937-24953.
  34. Robert, R.B., E.O. Michael, and M.B. James, 1993. Influences of the Orinoco River outflow on distributions of algal pigments in the Caribbean Sea, Journal of Geophysical Research, 98(C2): 2259-2269.
  35. Siswanto, E., J. Tang, H. Yanaguchi, Y.H. Ahn, J. Ishizaka, S.J. Shin, S.W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, and H. Kawamura, 2011. Empirical ocean-color algorithms to retrieve chlorophyll-a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas, Journal of Oceanography, 67(5): 627-650.
  36. Son, Y.B., W.D. Gardner, A.V. Mishonov, and M.J. Richardson, 2009. Multispectral remotesensing algorithms for particulate organic carbon (POC): The Gulf Mexico, Remote sensing of Environment, 113(1): 50-61.
  37. Tang, J., X. Wang, Q. Song, T. Li, J. Chen, H. Huang, and J. Ren, 2004. The statistical inversion algorithms of water constituents for the Huanghai Sea and the East China Sea, Acta Oceanologica Sinica, 23(4): 617-626.
  38. Urban-Rich, J., 1999. Release of dissolved organic carbon from copepod fecal pellets in the Greenland Sea, Journal of Experimental Marine Biology and Ecology, 232(1): 107-124.
  39. Williamson, C.E., R.S. Stemberger, D.P. Morris, T.M. Frost, and S.G. Paulsen, 1996. Ultraviolet radiation in North American lakes: Attenuation estimates from DOC measurements and implications for plankton communities, Limnology and Oceanography, 41(5): 1024-1034.
  40. Yoo, S.J., H.C. Kim, J.A. Lee, and M.O. Park, 2002. Validation of chlorophyll algorithm in Ulleung Basin, East/Japan Sea, Remote sensing of Environment, 18(1): 35-42.
  41. Zanardi-Lamardo, E., C.D. Clark, C.A. Moore, and R.G. Zika, 2002. Comparison of the molecular mass and optical properties of colored dissolved organic material on two rivers and coastal waters by flow field-flow fractionation, Environmental Science and Technology, 36(13): 2806-2814.

Cited by

  1. Estimation of Water Quality Index for Coastal Areas in Korea Using GOCI Satellite Data Based on Machine Learning Approaches vol.32, pp.3, 2016,
  2. Comparison of Distribution and Characteristics of CDOM in Spring 2012 and 2014 in the Southwestern East Sea of Korea vol.24, pp.5, 2018,