DOI QR코드

DOI QR Code

Research Trends in Hormetic Stimulation Effects of Herbicides in Plants

식물에서 제초제의 양면성 촉진반응 연구동향

  • Pyon, Jong-Yeong (ReSEAT Program, Korea Institute of Science and Technology Information) ;
  • Uddin, Md. Romij (Department of Crop Science, Chungnam National University) ;
  • Kim, Sang-Woo (ReSEAT Program, Korea Institute of Science and Technology Information) ;
  • Park, Kee-Woong (Department of Crop Science, Chungnam National University)
  • 변종영 (한국과학기술정보연구원 ReSEAT 프로그램) ;
  • 우딘 (충남대학교 식물자원학과) ;
  • 김상우 (한국과학기술정보연구원 ReSEAT 프로그램) ;
  • 박기웅 (충남대학교 식물자원학과)
  • Received : 2012.08.02
  • Accepted : 2012.09.18
  • Published : 2012.09.30

Abstract

Hormesis is a dose-response phenomenon that is characterized by low-dose stimulation and high-dose inhibition. This biphasic dose-responses have had a long and extensive history in the fields of chemical toxicology, radiation biology and pharmacology. Hormesis has been found from bacteria, fungi, plants and animals, but hormesis in plants has received relatively little attention. Thus principles, occurrence, factors affecting the expression of hormetic responses, and their mechanisms in plants induced by herbicides are reviewed to provide the potentials for crop enhancement. Bromacil, bromoxynil, chloramben, propachlor, terbacil, EPTC, MSMA, and glyphosate at low doses showed stimulatory response in growth. Subtoxic dose of glyphosate increased sucrose content in sugarcane that is used worldwide in sugarcane production. Low dose of protoporphyrinogen-inhibiting herbicides induced increased pathogen defence, and low dose of triazine herbicides improved nitrogen metabolism and increased protein content in some crops. Further researches on potential benefits and risks of hormesis and its mechanism are needed for application of crop enhancement in agriculture.

References

  1. Ahsan, N. D. G. Lee, and K. Lee. 2008. Glyphosateinduced oxidative stress in rice leaves revealed by proteomic approach. Plant Physiol. & Biochem. 46:1062-1070. https://doi.org/10.1016/j.plaphy.2008.07.002
  2. Allen, H. P., R. C. Brian, J. E. Downes, G. C. Mees, and R. H. Springett. 1978. Selective herbicides. In: Peacock, F. C (ed). Fifty years of Agricultural Research (1928-1978), pp. 35-41. The Kynoch Press.
  3. Allender, W. J. 1997. Effect of trifluoperazine and verapamil on herbicide stimulated growth of cotton. J. Plant Nutrition 20:69-80. https://doi.org/10.1080/01904169709365234
  4. Appleby, A. P. 1998. The practical implications of hormetic effects of herbicides on plants. Human & Experimental Toxicology 17:270-271. https://doi.org/10.1191/096032798678908747
  5. Belz, R. G., N. Cedergreen, and S. O. Duke. 2011. Herbicide hormesis - can it be useful in crop production? Weed Research 51:321-332. https://doi.org/10.1111/j.1365-3180.2011.00862.x
  6. Brain, R. A., C. J. Wilson, D. J. Johnson, H. Sanderson, K. Bestari, M. L. Hanson, P. K. Sibley, K. R. Solomon. 2005. Effects of mixture of tetracyclines to Lemna gibba and Myriophyllum sibiricum evaluated in aquatic microsoms. Environmental Pollution 138:425-442. https://doi.org/10.1016/j.envpol.2005.04.021
  7. Calabrese, E. J. 2002. Hormesis:changing view of the dose response, a personal account of the history and current status. Mut. Res. 551:181-189.
  8. Calabrese, E. J. 2005. Paradigm lost, paradigm found: The reemergence of hormesis as a fundamental dose response model in the toxicological sciences. Environ. Pollution. 138:378-411. https://doi.org/10.1016/j.envpol.2004.10.021
  9. Calabrese, E. J. and L. A. Baldwin. 2001. Hormesis: U-shaped dose responses and their centrality in toxicology. Trends in pharmacological sciences. 22:285-291. https://doi.org/10.1016/S0165-6147(00)01719-3
  10. Calabrese, E. J. and R. B. Blain. 2005. The occurrence of hormetic responses in the toxicological literature, the hormesis database:overview. Toxicol. & Applied Pharmacol. 202:289-301. https://doi.org/10.1016/j.taap.2004.06.023
  11. Carson, M. L., W. E. Arnold, and P. E. Todt. 1991. Prediposition of soybean seedlings to fusarium root rot with trifluralin. Plant Disease 75:342-347. https://doi.org/10.1094/PD-75-0342
  12. Cedergreen, N., N. Ritz, and J. C. Streibig. 2005. Improved empirical models describing hormesis. Environ. Toxicol. & Chem. 24:3166-3172. https://doi.org/10.1897/05-014R.1
  13. Cedergreen, N., J. C. Streibig, and N. H. Spliid. 2004. Species specific sensitivity of aquatic macrophytes towards herbicides. Environ. Toxicol. Environ. Safety 58:314-323. https://doi.org/10.1016/j.ecoenv.2004.04.002
  14. Cedergreen, N., J. C. Streibig, P. Kudsk, S. K. Mathiassen, S. O. Duke. 2007. The occurrence of hormesis in plants and algae. Dose response 5(2): 150-162. https://doi.org/10.2203/dose-response.06-008.Cedergreen
  15. Dalley, C. D. and E. P. Richard. 2010. Herbicides as ripeners for sugarcane. Weed Science 58:329-333. https://doi.org/10.1614/WS-D-09-00001.1
  16. Dann, E. K, B. W. Diers, and R. Hammerschmidt. 1999. Suppression of Sclerotinia stem rot of soybean by latofen herbicide treatment. Phytopathology 89: 698-602.
  17. Davies, J., J. L. Honegger, F. G. Tencalla, G. Meregalli, P. Brain, J. R. Newman, and H. F. Pitchford. 2003. Herbicide risk assessment for non-target aquatic plants: sulfosulfuron - a case study. Pest Manage. Sci. 59:231-237. https://doi.org/10.1002/ps.625
  18. Davis, J. M., and D. J. Svendsgaard. 1992. U-shaped dose-response curves:curves:their occurrence and implications for risk assessment. J. Toxicol. Environ. Health 30:71-83.
  19. DeDatta, S. K., W. M. Obcemea, P. R. Jana. 1972. Protein content of rice grain as affected by nitrogen fertilizer and some triazines and substituted ureas. Agronomy J. 64:785-791. https://doi.org/10.2134/agronj1972.00021962006400060024x
  20. Duke, S. O., A. M. Rimando, P. F. Pace, K. N. Reddy, and R. J. Smeda. 2003. Isoflavone, glyphosate, and aminomethylphosphonic acid levels in seeds of glyphosate-treated, glyphosate-resistant soybean. J. Agric. Food Chem. 51:340-344. https://doi.org/10.1021/jf025908i
  21. Duke, S. O., N. Cedergreen, E. D. Velin, and R. G. Belz. 2006. Hormesis:Is it an important factor in herbicide use and allelopathy?. Outlooks on Pest Manage. 17:29-33.
  22. El-Shahawy, T. A., F. A. A. Sharara. 2011. Hormetic effect of glyphosate on wheat and associated weeds. International J. of Academic Research 3(3):520-524.
  23. El-Shahawy, T. A., F. A. A. Sharara. 2011. Hormesis influence of glyphosate in between increasing growth, yield and controlling weeds in faba bean. J. of American Sci. 7:139-143.
  24. Hilton, H. W., R. V. Osgood, and A. Maretzki. 1980. Some aspects of Mon 8000 (glyphosate) as a sugarcane ripener to replace Polaris. Proc. Int. Soc. Sugarcane Technol. 17:652-661.
  25. Hodges, R. E. 1992. Vegetative growth and sporulation of Bipolaris sorokiniana on infected leaves of Poa pratensis exposed to postemergence herbicides. Canadian Journal of Botany 70:568-570. https://doi.org/10.1139/b92-072
  26. Kovalchuck, J., Filkowski, K. Smith, and O. Kovalchuck. 2003. Reactive oxygen species stimulate homologous recombination in plants. Plant Cell. Environ. 26:1531-1539. https://doi.org/10.1046/j.1365-3040.2003.01076.x
  27. Liu, L., Z. K. Punja, and J. E. Rahe. 1997. Altered root exudation and suppression of induced lignification as mechanisms of predisposition by glyphosate of bean root to colonization by Pythium spp. Physiol. Mol. Pathol. 51:111-127. https://doi.org/10.1006/pmpp.1997.0113
  28. Maretzki, A., M. Thom, and P. H. Moore. 1976. Growth patterns and carbohydrate distribution in sugarcane plants treated with an amine salt of glyphosate. Hawaiian Planters' Rec. 59:21-32.
  29. Marks, G. C. and R. Cerra. 1991. Effects of propazine and chlorthal dimethyl on Phytophthora cinnamomi root disease of Pinus radiata seedlings and associated soil microflora. Soil Biology and Biochem. 23:157-164. https://doi.org/10.1016/0038-0717(91)90129-8
  30. Mathers, J., J. A. Fraser, M. McMahon, R. D. Saunders, J. D. Hayes, and L. I. McLellan. 2004. Antioxidant and cytoprotective responses to redox stress. Biochem Soc. Symp. 71:157-176. https://doi.org/10.1042/bss0710157
  31. Mattson, M. P., S. Maudsley, B. Martin. 2004. A neural signaling triumvirate that influences aging and age-related disease:insulin/IGF-1, BDNF and serotonin. Aging Res. Rev. 3:445-464. https://doi.org/10.1016/j.arr.2004.08.001
  32. McDonald, L., T. Morgan, and P. Jackson. 2001. The effect of ripeners on the CCS or 47 sugarcane varieties in the burdekin. Proceeding Conf. Australian Society Sugar Cane Technologists 23:102-108.
  33. Moore, D. J. 2000. Chemical hormesis in cell growth: A molecular target at the cell surface. J. of Applied Toxicol. 20:157-163. https://doi.org/10.1002/(SICI)1099-1263(200003/04)20:2<157::AID-JAT648>3.0.CO;2-9
  34. Nelson, A., K. A. Renner, and R. Hammerschmidt. 2002. Effects of protoporphrinogen oxidase inhibitors on soybean response, Sclerotinia sclerotiorum disease development, and phytoalexin production by soybean. Weed Technol. 16:353-359. https://doi.org/10.1614/0890-037X(2002)016[0353:EOPOIO]2.0.CO;2
  35. Nickell, L. G. 1982. Plant growth regulators in the sugarcane industry. In:McLaren, J. S. (ed.): Chemical manipulation of crop growth and development, pp. 167-189. Butterworth, London.
  36. Parson, P. A. 2003. Metabolic efficiency in response to environmental agents predicts hormesis and invalidates the linear No-Threshold Premise:Ionizing radiation as a case study. Crit. Rev. Toxicol. 33: 443-450. https://doi.org/10.1080/713611046
  37. Pulver, E. L. and S. K. Ries. 1973. Action of simazine in increasing plant protein content. Weed Sci. 21:233-237.
  38. Rich, D. 2008. Producers look for yield increases from fungicides and seed treatments. High Plains Journal. 03/24.
  39. Ries, S. K., H. Chmiel, D. R. Dilley, and P. Filner. 1967. The increase in nitrate reductase activity and protein content of plants treated with simazine. Proc. National Academy of Sci. 58:526-532. https://doi.org/10.1073/pnas.58.2.526
  40. Ries, S. K., O. Moreno, W. F. Meggitt, C. J. Schweizer, S. A. Ashkar. 1970. Wheat seed protein: Chemical influence on and relationship to subsequent growth and yield in Michigan and Mexico. Agron. J. 62:746-751. https://doi.org/10.2134/agronj1970.00021962006200060018x
  41. Rowntree, J. K., K. F. Lawton, F. J. Rumsey, and E. Sheffield. 2003. Exposure of asulox inhibits the growth of mosses. Annals of Botany 92:547-556. https://doi.org/10.1093/aob/mcg166
  42. Southam, C. M., and J. Ehrlich. 1943. Effects of extracts of western red ceder heartwood on certain wood-decaying fungi in culture. Phytopathology 33:517-524.
  43. Streibig, J. C. 1980. Models for curve-fitting herbicide dose response data, Acta Agriculture Scandinavia 30:59-64 https://doi.org/10.1080/00015128009435696
  44. Su, L. Y., A. D. Cruz, P. H. Moore, and A. Maretzki. 1992. The relationship of glyphosate treatment to sugar metabolism in sugarcane:New physiological insights. J. Plant Physiol. 140:168-172. https://doi.org/10.1016/S0176-1617(11)80929-6
  45. Velini, E. D., E. Alves, M. C. Godoy, D. K. Meschede, R. T. Souza, and S. O. Duke. 2008. Glyphosate at low doses can stimulate plant growth. Pest Manage. Sci. 64:489-496. https://doi.org/10.1002/ps.1562
  46. Wagner, R., M. Kogan, and M. Parada. 2003. Phytotoxic activity of root absorbed glyphosate in corn seedlings. Weed Biol. and Manage. 3:228-232. https://doi.org/10.1046/j.1444-6162.2003.00110.x
  47. Wiedman, S. J. and A. P. Appleby. 1972. Plant growth stimulation by sublethal concentrations of herbicides. Weed Res. 12:65-74. https://doi.org/10.1111/j.1365-3180.1972.tb01188.x