Municipal Wastewater Treatment and Microbial Diversity Analysis of Microalgal Mini Raceway Open Pond

미세조류 옥외 배양시스템을 이용한 도시하수 정화 및 미생물 군집다양성 분석

  • Kang, Zion (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Byung-Hyuk (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Shin, Sang-Yoon (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Oh, Hee-Mock (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Hee-Sik (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • 강시온 (한국생명공학연구원 환경바이오연구센터) ;
  • 김병혁 (한국생명공학연구원 환경바이오연구센터) ;
  • 신상윤 (한국생명공학연구원 환경바이오연구센터) ;
  • 오희목 (한국생명공학연구원 환경바이오연구센터) ;
  • 김희식 (한국생명공학연구원 환경바이오연구센터)
  • Received : 2012.08.29
  • Accepted : 2012.09.20
  • Published : 2012.09.30


Microalgal biotechnology has gained prominence because of the ability of microalgae to produce value-added products including biodiesel through photosynthesis. However, carbon and nutrient source is often a limiting factor for microalgal growth leading to higher input costs for sufficient biomass production. Use of municipal wastewater as a low cost alternative to grow microalgae as well as to treat the same has been demonstrated in this study using mini raceway open ponds. Municipal wastewater was collected after primary treatment and microalgae indigenous in the wastewater were encouraged to grow in open raceways under optimum conditions. The mean removal efficiencies of TN, TP, COD-$_{Mn}$, $NH_3$-N after 6 days of retention time was 80.18%, 63.56%, 76.34%, and 96.74% respectively. The 18S rRNA gene analysis of the community revealed the presence of Chlorella vulgaris and Scenedesmus obliquus as the dominant microalgae. In addition, 16S rRNA gene analysis demonstrated that Rhodobacter, Luteimonas, Porphyrobacter, Agrobacterium, and Thauera were present along with the microalgae. From these results, it is concluded that microalgae could be used to effectively treat municipal wastewater without aerobic treatment, which incurs additional energy costs. In addition, municipal wastewater shall also serve as an excellent carbon and nitrogen source for microalgal growth. Moreover, the microalgal biomass shall be utilized for commercial purposes.


microalgae;microbial diversity;open culture system;wastewater treatment


Supported by : 교육과학기술부, 한국생명공학연구원


  1. Aaronson, S. and Dubinsky, Z. 1982. Mass production of microalgae. Cell. Mol. Life Sci. 38, 36-40.
  2. APHA. 1998. Standard methods for the examination of water and wastewater, 20th ed. APHA, Washington, D.C. USA.
  3. Cain, J.R., Paschal, D.C., and Hayden, C.M. 1980. Toxicity and bioaccumulation of cadmium in the colonial green alga Scenedesmus obliquus. Arch. Environ. Contam. Toxicol. 9, 9-16.
  4. Carberry, J.B. and Greene, R.W. 1992. Model of algal bacterial clay wastewater treatment system. Water Sci. Technol. 26, 1697-1706.
  5. Chen, Y., Lin, C.J., Jones, G., Fu, S., and Zhan, H. 2009. Enhancing biodegradation of wastewater by microbial consortia with fractional factorial design. J. Hazard. Mater. 171, 948-953.
  6. Chisti, Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25, 294-306.
  7. Crocetti, G.R., Hugenholtz, P., Bond, P.L., Schuler, A., Keller, J., Jenkins, D., and Blackall, L.L. 2000. Identification of polyphosphateaccumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. Appl. Environ. Microbiol. 88, 1175-1182.
  8. Finkmann, W., Altendorf, K., Stackebrandt, E., and Lipski, A. 2000. Characterization of $N_{2}O$-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. mov., sp. nov. and Pseudoxanthomonas broegernensis gen. nov., sp. nov. Int. J. Syst. Evol. Microbiol. 50, 273-282.
  9. Gander, M., Jefferson, B., and Judd, S. 2000. Aerobic MBRs for domestic wastewater treatment: a review with cost consideration. Sep. Purif. Technol. 18, 119-130.
  10. Gonzalez, L.E., Cañizares, R.O., and Baena, S. 1997. Efficiency of ammonia and phosphorus removal from a colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresour. Technol. 60, 259-262.
  11. Guerrero, M.G., Vega, J.M., and Losada, M. 1981. The assimilatory nitrate-reducing system and its regulation. Ann. Rev. Plant Physiol. 32, 169-204.
  12. Guschina, I.A. and Harwood, J.L. 2006. Lipids and lipid metabolism in eukaryotic algae. Prog. Lipid Res. 45, 160-186.
  13. Heo, H.W., Sin, G.S., Park, S.G., Park, J.B., JuChoe, E., and Kang, H. 2003. Evaluation of affecting factors for efective anaerobic phosphorus release. J. KSEE. 25, 155-162.
  14. Hesselmann, R.P.X., Werlen, C., Hahn, D., Meer, J.R.v.d., and Zehnder, A.J.B. 1999. Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge. Syst. Appl. Microbiol. 22, 454-465.
  15. Huang, J.S., Wu, C.S., Jih, C.G., and Chen, C.T. 2001. Effect of addition of Rhodobacter sp. to activated-sludge reactors treating piggery wastewater. Water Res. 35, 3867-3875.
  16. Ishii, K. and Fukui, M. 2001. Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Appl. Environ. Microbiol. 67, 3753-3755.
  17. Jaspers, E., Nauhaus, K., Cypionka, H., and Overmann, J. 2001. Multitude and temporal variability of ecological niches as indicated by the diversity of cultivated bacterioplankton. FEMS Microbiol. Ecol. 36, 153-164.
  18. Jeong, M.L., Gillis, J.M., and Hwang, J.-Y. 2003. Carbon dioxide mitigation by microalgal photosynthesis. Bull. Korean Chem. Soc. 24, 1763-1766.
  19. Juretschko, S., Loy, A., Lehner, A., and Wagner, M. 2002. The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. Syst. Appl. Microbiol. 25, 84-99.
  20. Kim, K.J. and Yoon, S.H. 2001. Wastewater treatment using membrane bioreactors (MBR). J. Ind. Eng. Chem. 12, 239-248.
  21. Lau, P.S., Tam, N.F.Y., and Wong, Y.S. 1995. Effect of algal density on nutrient removal from primary settled wastewater. Environ. Pollut. 89, 59-66.
  22. Mandal, S. and Mallick, N. 2009. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl. Microbiol. Biotechnol. 84, 281-291.
  23. Martinez, M.E., Sánchez, S., Jimenez, J.M., Yousfi, F.E., and Munoz, L. 2000. Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour. Technol. 73, 263 -272.
  24. Melin, T., Jefferson, B., Bixio, D., Thoeye, C., Wilde, W.D., Koning, J.D., Graaf, J., and Wintgens, T. 2006. Membrane bioreactor technology on wastewater treatment and reuse. Desalination 187, 271-282.
  25. Melis, A. and Happe, T. 2001. Hydrogen production. Green algae as a source of energy. Plant Physiol. 127, 740-748.
  26. Minowa, T., Yokoyama, S., Kishimoto, M., and Okakura, T. 1995. Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel. 74, 1735-1738.
  27. Morris, I. and Syrett, P.J. 1963. The development of nitrate reductase in Chlorella and its repression by ammonium. Arch. Microbiol. 47, 32-41.
  28. Muyzer, G. 1999. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr. Opin. Microbiol. 2, 317-322.
  29. Muyzer, G., Waal, E.C.d., and Uitierlinden, A.G. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695-700.
  30. Nakayama, T., Watanabe, S., Mitsui, K., Uchida, H., and Inouye, I. 1996. The phylogenetic relationship between the Chlamydomonadales and Chlorococcales inferred from 18S rDNA sequence data. Phycol. Res. 44, 47-55.
  31. Park, J.B., Park, S.K., Hur, H.W., and Kang, H. 2009. Estimation of kinetic coefficient in submerged membrane bioreactor for biological nutrient removal. J. KSEE 31, 109-113.
  32. Park, J.B., Shin, K.S., Hur, H.W., and Kang, H. 2011. Development of influent controlled membrane bioreactor for biological nutrient removal on municipal wastewater. J. KSEE 33, 485-491.
  33. Philipp, B. and Schink, B. 2000. Two distinct pathways for anaerobic degradation of aromatic compounds in the denitrifying bacterium Thauera aromatica strain AR-1. Arch. Microbiol. 173, 91-96.
  34. Pittman, J.K., Dean, A.P., and Osundeko, O. 2011. The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 102, 17-25.
  35. Rectenwald, L.L. 2000. Nutrient removal from wastewater effluent using ecological water treatment system. Environ. Sci. Technol. 34, 522-526.
  36. Scragg, A.H., Morrison, J., and Shales, S.W. 2003. The use of a fuel containing Chlorella vulgaris in a diesel engine. Enzyme Microb. Technol. 33, 884-889.
  37. Shi, L., Cai, Y., Li, P., Yang, H., Liu, Z., Kong, L., Yu, Y., and Kong, F. 2009. Molecular identification of the colony-associated cultivable bacteria of the Cyanobacterium Microcystis aeruginosa and their effects on algal growth. J. Freshw. Ecol. 24, 211-218.
  38. Smith, F.W. and Thompson, J.F. 1971. Regulation of nitrate reductase in Chlorella vulgaris. Plant Physiol. 48, 224-227.
  39. Soeder, C.J. 1980. Mass production of microalgae: Results and Prospects. Hydrobiologia. 72, 197-209.
  40. Syrett, P.J. and Morris, I. 1963. The inhibition of nitrateassimilation by ammonium in Chlorella. Biochimica et Biophysica Acta. 67, 566-575.
  41. Wilkiea, A.C. and Mulbry, W.W. 2002. Recovery of dairy manure nutrients by benthic fresh water algae. Bioresour. Technol. 84, 81-91.
  42. Yun, Y.S., Lee, S.B., Park, J.M., Lee, C.I., and Yang, J.W. 1997. Carbon dioxide fixation by algal cultivation using wastewater nutrients. J. Chem. Tech. Biotechnol. 69, 451-455.<451::AID-JCTB733>3.0.CO;2-M
  43. Yun, Y.S., Park, J.M., and Yang, J.W. 1996. Enhancement of $CO_{2}$ tolerance of Chlorella vulgaris by gradual increase of $CO_{2}$ concentration. Biotechnol. Tech. 10, 713-716.

Cited by

  1. The Effect of Microalgal Growth on Nutrient Sources Using Microalgal Small Scale Raceway Pond (SSRP) for Biodiesel Production vol.50, pp.4, 2014,
  2. Effects of pH and aeration rates on removal of organic matter and nutrients using mixotrophic microalgae vol.27, pp.1, 2013,
  3. Design and Fabrication of a Light-Guiding Plate for a Photobioreactor Utilizing a Hybrid LED Plus Sunlight Source vol.27, pp.2, 2016,
  4. Biodiesel Production and Nutrients Removal from Piggery Manure Using Microalgal Small Scale Raceway Pond (SSRP) vol.32, pp.1, 2014,
  5. Efficiency of Nutrient Removal and Biomass Productivity in The Wastewater by Microalgae Membrane Bioreactor Process vol.30, pp.4, 2014,