DOI QR코드

DOI QR Code

Enhancement of Light Extraction in White LED by Double Molding

이중 몰딩에 의한 백색 LED의 광추출 효율 향상

  • Jang, Min-Suk (Korea Photonics Technology Institute, New Lighting Solution R&DB Sector) ;
  • Kim, Wan-Ho (Korea Photonics Technology Institute, New Lighting Solution R&DB Sector) ;
  • Kang, Young-Rea (Korea Photonics Technology Institute, New Lighting Solution R&DB Sector) ;
  • Kim, Ki-Hyun (Korea Photonics Technology Institute, New Lighting Solution R&DB Sector) ;
  • Song, Sang-Bin (Korea Photonics Technology Institute, New Lighting Solution R&DB Sector) ;
  • Kim, Jin-Hyuk (School of Materials Science & Engineering, Chonnam University) ;
  • Kim, Jae-Pil (Korea Photonics Technology Institute, New Lighting Solution R&DB Sector)
  • 장민석 (한국광기술원 신광원조명사업단) ;
  • 김완호 (한국광기술원 신광원조명사업단) ;
  • 강영래 (한국광기술원 신광원조명사업단) ;
  • 김기현 (한국광기술원 신광원조명사업단) ;
  • 송상빈 (한국광기술원 신광원조명사업단) ;
  • 김진혁 (전남대학교 신소재공학부) ;
  • 김재필 (한국광기술원 신광원조명사업단)
  • Received : 2012.07.30
  • Accepted : 2012.09.19
  • Published : 2012.10.01

Abstract

Chip on board type white light emitting diode on metal core printed circuit board with high thixotropy silicone is fabricated by vacuum printing encapsulation system. Encapsulant is chosen by taking into account experimental results from differential scanning calorimeter, shearing strength, and optical transmittance. We have observed that radiant flux and package efficacy are increased from 336 mW to 450 mW and from 11.9 lm/W to 36.2 lm/W as single dome diameter is varied from 2.2 mm to 2.8 mm, respectively. Double encapsulation structure with 2.8 mm of dome diameter shows further significant enhancement of radiant flux and package efficacy to 667 mW and 52.4 lm/W, which are 417 mW and 34.8 lm/W at single encapsulation structure, respectively.

Acknowledgement

Grant : 고효율 고신뢰성 LED 패키징 소재 기술 개발

Supported by : 지식경제부

References

  1. H. Kim, J. K. Youm, W. S. Chung, and H. J. Kim, J. KIIEE, 23, 22 (2009).
  2. X. Qu, S. C. Wong, and C. K. Tse, Proc. Industrial Electronics Society, 1361 (2007).
  3. B. H. Jeong, N. O. Kim, D. G. Kim, G. G. Oh, G. B. Cho, and K. Y. Lee, J. KIIEE, 23, 12 (2009).
  4. Z. Liu, S. Liu, K. Wang, and X. Luo, J. IEEE, Photonic Tech L, 20, 24 (2008). https://doi.org/10.1109/LPT.2007.910757
  5. Z. Liu, S. Liu, K. Wang, and X. Luo, J. Optoelectron, China, 2, 119 (2009). https://doi.org/10.1007/s12200-009-0011-2
  6. Z. Liu, S. Liu, K. Wang, and X. Luo, J. IEEE, Photonic Tech L., 9, 1 (2009).
  7. L. Zhu, X. H. Wang, P. T. Lai, and H. W. Choi, J. IEEE, Photonic Tech L, 22, 7 (2010).
  8. J. K. Kim, H. Luo, E. F. Schubert, J. H. Cho, C S. Sone, and Y. J. Park, J. Jpn. Appl. Phys., 44, 21 (2005). https://doi.org/10.1143/JJAP.44.21
  9. H. T. Huang, C. C. Tsai, and Y. P. Huang, J. Opt Express, 18, 102 (2010). https://doi.org/10.1364/OE.18.000102
  10. K. Wang, D. Wu, F. Chen, Z. Lui, X. Luo, and S. Lui, J. Opt Lett.,. 35, 11 (2010).
  11. A. Okuno. N. Fujita, and Y. Ishikawa, J. IEEE Adv. Packaging, 22, 3 (1999).
  12. A. Okuno, J. IEEE, Compon Pack., A17, 1 (1994).
  13. A. Okuno, J. IEEE, Compon. Hybr., 17, 143 (1994).
  14. M. S. Jang, Y. W. Kim, G. H. Shin, J. W. Park, and J. P. Hong, S. B. Song, and J. P. Kim, J. Kor, KIIEE, 25, 2 (2011).
  15. Z. Liu, S. Liu, K. Wang, and X. Luo, J. IEEE Photonic Tech L., 20, 24 (2008). https://doi.org/10.1109/LPT.2007.910757
  16. T. Nguyen, and G. S. Frank, J. Lightwave Technol., 26, 21 (2008). https://doi.org/10.1109/JLT.2007.911898
  17. B. Braune, K. Petersen, J. Strauss, P. Kromotis, and M. Kaempf, Proc. SPIE, 6486 (2007).
  18. S. C. Allen and A. J. Steckl, J. Phys Lett., 92, 14 (2008).