Properties of EMNC according to Addition Contents Variation for Nanosilica (1) -For Thermal Properties

나노실리카 충진함량 변화에 따른 EMNC의 특성연구 (1) -열적특성 중심으로-

  • Choi, Woon-Shik (Department of Technology Education, Sehan University) ;
  • Park, Jae-Jun (Department of Electrical Electronic Engineering, Joongbu University)
  • 최운식 (세한대학교 기술교육학과) ;
  • 박재준 (중부대학교 전기전자공학과)
  • Received : 2012.08.24
  • Accepted : 2012.09.24
  • Published : 2012.10.01


This paper focuses on thermal properties of a newly prepared composite material by nano-silica and micro-silica mixture. Nano-silica and micro-silica mixture composites were made by dispersing surface treated nano-silica(average radius: 10 nm) and micro-size silica in epoxy resin. To investigate the effects of nano-silica and micro-size silica mixture(ENMC), the glass transition temperature (Tg), coefficients of thermal expansion(CTE) and elastic modulus of DMA properties by DSC, TMA and DMA devices were measured for the ENMC according to increase nano-silica addition contents and EMC. All properties of the neat epoxy were improved by the addition of micro-silica, which was improved much further by the addition of surface treated nano-silica to the EMC system.


  1. M. Alexandre and P. Dubois, Mater. Sci. Eng., 28, 63 (2000).
  2. J. Mark, Polym. Eng. Sci., 36, 2905 (1996).
  3. R. Kotsilkova, D. Nesheva, I. Nedkov, E. Krusteva, and S. S. Rheological, J. Appl. Polym. Sci., 92, 2220 (2004).
  4. G. Chen, C. Wu, W. Weng, D. Wu, and W. Yan, Polymer, 44, 1781 (2003).
  5. E. Thostenson, Z. Ren, and T. Chou, Compos. Sci. Technol., 61, 1899 (2001).
  6. B. Wetzel, F. Haupert, and M. Q. Zhang, Compos. Sci. Technol., 63, 2055 (2003).
  7. Y. Dong, D. Chaudhary, C. Ploumis, and K. T. Lau, Compos. Pt., A42, 1483 (2011).
  8. T. W. Dakin, IEEE Trans. Dielectr. Electr. Insul., EI-9, 121 (1974).
  9. J. Sato, O. Sakaguchi, N. Kubota, S. Makishima, S. Kinoshita, T. Shioiri, T. Yoshida, M. Miyagawa, M. Homma, and E. Kaneko, IEEE/PES Transmission and Distribution Conference and Exhibition: Asia Pacific, 3, 1791 (2002).
  10. T. Shimizu, S. Kinoshita, S. Makishima, J. Sato, and O. Sakaguchi, IEEE 7th Intern. Conf. Properties and Application of Dielectric Materials (ICPADM), S22, 1194 (2003).
  11. T. Imai, F. Sawa, T. Nakano, T. Ozaki, T. Shimizu, M. Kozako, and T. Tanaka, IEEE Trans. Dielectr. Electr. Insul., 13, 319 (2006).
  12. J. J. Park, C. H. Lee, J. Y. Lee, and H. D. Kim, IEEE Trans. Dielectr. Electr. Insul., 18, 667 (2011).
  13. J. J. Park and J. Y. Lee, IEEE Trans. Dielectr. Electr. Insul., 17, 1516 (2010).
  14. B. Wetzel, F. Haupert, and M. Q. Zhang, Compos. Sci. Technol., 63, 2055 (2003).
  15. J. A. Kim, D. G. Seong, T. J. Kang, and J. R. Youn, Carbon, 44, 1898 (2006).
  16. S. Deng, L. Ye, and K. Friedrich, J. Mater. Sci., 42, 2766 (2007).
  17. A. Yasmin, J. J. Luo, J. L. Abot, and I. M. Daniel, Compos. Sci. Technol., 66, 2415 (2006).
  18. H. J. Song and Z. Z. Zhang, Tribol. Int., 41, 396 (2008).
  19. J. M. Choi, S. Y. Yu, S. H. Yang, and M. H. Cho, Polymer, 52, 5197 (2011).
  20. K. Chen and S. Yang, J. Appl. Polym. Sci., 86, 414 (2002).
  21. X. Liu and Q. Wu, Polymer, 42, 10013 (2001).
  22. Y. Sun, Z. Zhang, and C. P. Wong, IEEE T. Comon Pack., T29, 190 (2006).
  23. R. K. Goyal, A. N. Tiwari, U. P. Mulik, and Y. S. Negi, J. Phys. D. Appl. Phys., 41, 7 (2008).
  24. V. M. F. Evora and A. Shukla, Mater. Sci. Eng., A361, 358 (2003).
  25. D. Fragiadakisa, P. Pissisa, and L. Bokobza, Polymer, 46, 6001 (2005).
  26. J. J. Park, Trans. Electr. Electron. Mater., 13, 153 (2012).
  27. W. K. Goertzen and M. R. Kessler, J. Appl. Polym. Sci., 109, 647 (2008).
  28. E. Foo, M. Jaafar, A. Aziz, and L. C. Sim, Compos. Pt., A42, 1432 (2011).
  29. P. L. Teh, M. Mariatti, H. M. Akil, C. K. Yeoh, K. N. Seetharamu, A. N. R. Wagiman, and K. S. Beh, Mater. Lett., 61, 2156 (2007).