DOI QR코드

DOI QR Code

Molecular Cloning and Characterization of Chymotrypsin Inhibitor and Chitin-Binding Protein Homologs from the Bumblebee Bombus terrestris

  • Qiu, Yuling (College of Natural Resources and Life Science, Dong-A University) ;
  • Yoon, Hyung-Joo (Department of Agricultural Biology, National Academy of Agricultural Science) ;
  • Jin, Byung-Rae (College of Natural Resources and Life Science, Dong-A University)
  • Received : 2012.08.21
  • Accepted : 2012.09.07
  • Published : 2012.09.30

Abstract

The bumblebee Bombus terrestris is widely used in greenhouses to pollinate crops. Here, we report the molecular cloning and characterization of chymotrypsin inhibitor and chitin-binding protein homologs from B. terrestris. Two cDNAs encoding chymotrypsin inhibitor (Bt-CI) and chitin-binding protein (Bt-CBP) homologs were cloned from B. terrestris. Gene sequence analysis showed that Bt-CI gene consists of three exons encoding 75 amino acids, including a predicted 20-amino acid signal peptide, while Bt-CBP consists of two exons encoding 78 amino acids, including a predicted 26-amino acid signal peptide. The mature Bt-CI and Bt-CBP peptides contain ten and six conserved cysteine residues, respectively. Database searches using the deduced sequences of Bt-CI and Bt-CBP showed similarity to those from B. impatiens (96% peptide sequence identities). Bt-CI and Bt-CBP were expressed in both the venom gland and fat body of B. terrestris worker bees. The recombinant Bt-CI and Bt-CBP peptides were expressed in baculovirus-infected insect cells. Taken together, our findings describe the molecular characterization of Bt-CI and Bt-CBP from B. terrestris.

Acknowledgement

Supported by : Dong-A University

References

  1. Bania J, Stachowiak D, Polanowski A (1999) Primary structure and properties of the cathepsin G/chymotrypsin inhibitor from the larval hemolymph of Apis mellifera. Eur J Biochem 262, 680-687. https://doi.org/10.1046/j.1432-1327.1999.00406.x
  2. Bridges AR, Owen MD (2005) The morphology of the honey bee (Apis mellifera L.) venom gland and reservoir. J Morphol 181, 69-86.
  3. Chang LS, Chung C, Huang HB, Lin SR (2001) Purification and characterization of a chymotrypsin inhibitor from the venom of Ophiophagus hannah (king cobra). Biochem Biophys Res Commun 283, 862-867.
  4. Choo YM, Lee KS, Yoon HJ, Je YH, Lee SW, Sohn HD, Jin BR (2010a) Molecular cloning and antimicrobial activity of bombolitin, a component of bumblebee Bombus ignitus venom. Comp Biochem Physiol B 156, 168-173. https://doi.org/10.1016/j.cbpb.2010.03.007
  5. Choo YM, Lee KS, Yoon HJ, Kim BY, Sohn MR, Roh JY, Je YH, Kim NJ, Kim I, Woo SD, Sohn HD, Jin BR (2010b) Dual strategy of bee venom serine protease: prophenoloxidase- activating factor in arthropods and fibrin(ogen)olytic enzyme in mammals. PLoS ONE 5, e10393. https://doi.org/10.1371/journal.pone.0010393
  6. Choo YM, Lee KS, Yoon HJ, Qiu Y, Wan H, Sohn MR, Sohn HD, Jin BR (2012) Antifibrinolytic role of a bee venom serine protease inhibitor that acts as a plasmin inhibitor. PLoS ONE 7, e32269. https://doi.org/10.1371/journal.pone.0032269
  7. Conlon JM, Kim JB (2000) A protease inhibitor of the Kunitz family from skin secretions of the tomato frog, Dyscophus guineti (Microhylidae). Biochem Biophys Res Commun 279, 961-964. https://doi.org/10.1006/bbrc.2000.4052
  8. Corral-Rodriguez MA, Macedo-Ribeiro S, Pereira PJB, Fuentes-Prior P (2009) Tick-derived Kunitz-type inhibitors as antihemostatic factors. Insect Biochem Mol Biol 39, 579-595. https://doi.org/10.1016/j.ibmb.2009.07.003
  9. Flight SM, Johnson LA, Du QS, Warner RL, Trabi M, Gaffney PJ, Lavin MF, de Jersey J, Masci PP (2009) Textilinin-1, an alternative anti-bleeding agent to aprotinin: Importance of plasmin inhibition in controlling blood loss. British J Hematol 145, 207-211. https://doi.org/10.1111/j.1365-2141.2009.07605.x
  10. Flight S, Johnson L, Trabi M, Gaffney P, Lavin M, de Jersey J, Masci P (2005) Comparison of textinin-1 with aprotinin as serine protease inhibitors and as antifibrinolytic agents. Pathophysiol Haemost Thromb 34, 188-193. https://doi.org/10.1159/000092421
  11. Gebhard LG, Carrizo FU, Stern AL, Burgardt NI, Faivivich J, Lavilla E, Ermácora MR (2004) A Kazal prolyl endopeptidase inhibitor isolated from the skin of Phyllomedusa sauvagii. Eur J Biochem 271, 2117-2126. https://doi.org/10.1111/j.1432-1033.2004.04127.x
  12. De Graaf DC, Aerts M, Brunain M, Desjardins CA, Jacobs FJ, Werren JH, Devreese B (2010) Insights into the venom composition of the ectoparasitoid wasp Nasonia vitripennis from bioinformatics and proteomic studies. Insect Mol Biol 19, 11-26. https://doi.org/10.1111/j.1365-2583.2009.00914.x
  13. He YY, Liu SB, Lee WH, Qian JQ, Zhang Y (2008) Isolation, expression and characterization of a novel dual serine protease inhibitor, OH-TCI, from king cobra venom. Peptides 29, 1692-1699. https://doi.org/10.1016/j.peptides.2008.05.025
  14. Jasrapuria S, Arakane Y, Osman G, Kramer KJ, Beeman RW, Muthukrishnan S (2010) Genes encoding proteins with peritrophin A-type chitin-binding domains in Tribolium castaneum are grouped into three distinct families based on phylogeny, expression and function. Insect Biochem Mol Biol 40, 214-227. https://doi.org/10.1016/j.ibmb.2010.01.011
  15. Je YH, Chang JH, Choi JY, Roh JY, Jin BR, O'Reilly DR, Kang SK (2001) A defective viral genome maintained in Escherichia coli for the generation of baculovirus expression vectors. Biotechnol Lett 23, 575-582. https://doi.org/10.1023/A:1010301404445
  16. Masci PP, Whitaker AN, Sparrow LG, de Jersey J, Winzor DJ, Watters DJ, Lavin MF, Gaffney PJ (2000) Textilinins from Pseudonaja textilis textilis. Characterization of two plasmin inhibitors that reduce bleeding in an animal model. Blood Coagul Fibrinolysis 11, 385-393. https://doi.org/10.1097/00001721-200006000-00011
  17. Millers EKI, Trabi M, Masci PP, Lavin MF, de Jersey J, Guddat LW (2009) Crystal structure of textilinin-1, a Kunitz-type serine protease inhibitor from the venom of the Australian common brown snake (Pseudonaja textiles). FEBS J 276, 3163-3175. https://doi.org/10.1111/j.1742-4658.2009.07034.x
  18. Peiren N, de Graaf DC, Vanrobaeys F, Danneel EL, Dereese B, Van Beeumen J, Jacobs FJ (2008) Proteomic analysis of the honey bee worker venom gland focusing on the mechanisms of protection against tissue damage. Toxicon 52, 72-83. https://doi.org/10.1016/j.toxicon.2008.05.003
  19. Qiu Y, Choo YM, Yoon HJ, Jia J, Cui Z, Wang D, Kim DH, Sohn HD, Jin BR (2011) Fibrin(ogen)olytic activity of bumblebee venom serine protease. Toxicol Appl Pharmacol 255, 207-213. https://doi.org/10.1016/j.taap.2011.06.020
  20. Rhoads ML, Fetterer RH, Hill DE (2000a) Trichuris suis: a secretory serine protease inhibitor. Exp Parasitol 94, 1-7. https://doi.org/10.1006/expr.1999.4466
  21. Rhoads ML, Fetterer RH, Hill DE, Urban Jr JF (2000b) Trichuris suis: a secretory chymotrypsin/elastase inhibitor with potential as an immunomodulator. Exp Parasitol 95, 36-44. https://doi.org/10.1006/expr.2000.4502
  22. Song G, Zhou M, Chen W, Chen T, Walker B, Shaw C (2008) HV-BBI-a novel amphibian skin Bowman-Birk-like trypsin inhibitor. Biochem Biophys Res Commun 372, 191-196. https://doi.org/10.1016/j.bbrc.2008.05.035
  23. Tellam RL, Wijffels G, Willadsen P (1999) Peritrophic matrix proteins. Insect Biochem Mol Biol 29, 87-101. https://doi.org/10.1016/S0965-1748(98)00123-4
  24. Toprak U, Baldwin D, Erlandson M, Gillott C, Harris S, Hegedus DD (2010) Expression patterns of genes encoding proteins with peritrophin A domains and protein localization in Mamestra configurata. J Insect Physiol 56, 1711-1720. https://doi.org/10.1016/j.jinsphys.2010.06.016
  25. Wang P, Li G, Granados RR (2004) Identification of two new peritrophic membrane proteins from larval Trichoplusia ni: structural characteristics and their functions in the protease rich insect gut. Insect Biochem Mol Biol 34, 215-227. https://doi.org/10.1016/j.ibmb.2003.10.001
  26. Wang H, Wang L, Zhou M, Yang M, Ma C, Chen T, Zhang Y, Zeller M, Hornshaw M, Shaw C (2012) Functional peptidomics of amphibian skin secretion: A novel Kunitz-type chymotrypsin inhibitor from the African hyperoliid frog, Kassina senegalensis. Biochimie 94, 891-899. https://doi.org/10.1016/j.biochi.2011.12.008
  27. Xin Y, Choo YM, Hu Z, Lee KS, Yoon HJ, Cui Z, Sohn HD, Jin BR (2009) Molecular cloning and characterization of a venom phospholipase A2 from the bumblebee Bombus ignitus. Comp Biochem Physiol B 154, 195-202. https://doi.org/10.1016/j.cbpb.2009.06.003
  28. Yoon HJ, Sohn MR, Choo YM, Li J, Sohn HD, Jin BR (2009) Defensin gene sequences of three different bumblebees, Bombus spp. J Asia-Pac Entomol 12, 27-31. https://doi.org/10.1016/j.aspen.2008.11.003
  29. Yuan CH, He QY, Peng K, Diao JB, Tang X, Liang SP (2008) Discovery of a distinct superfamily of Kunitz-type toxin (KTT) from tarantulas. PLoS ONE 3, e3414. https://doi.org/10.1371/journal.pone.0003414
  30. Zhou XD, Jin Y, Lu QM, Li DS, Zhu SW, Wang WY, Xiong YL (2004) Purification, characterization and primary structure of a chymotrypsin inhibitor from Naja atra venom. Comp Biochem Physiol B 237, 219-214.

Cited by

  1. A bumblebee (Bombus ignitus) venom serine protease inhibitor that acts as a microbial serine protease inhibitor vol.167, 2014, https://doi.org/10.1016/j.cbpb.2013.10.002
  2. Anti-elastolytic activity of a honeybee (Apis cerana) chymotrypsin inhibitor vol.430, pp.1, 2013, https://doi.org/10.1016/j.bbrc.2012.11.056