DOI QR코드

DOI QR Code

Comparison of Different Theory Models and Basis Sets in Calculations of TPOP24N-Oxide Geometry and Geometries of meso-Tetraphenyl Chlorin N-Oxide Regioisomers

  • Received : 2012.03.10
  • Accepted : 2012.05.24
  • Published : 2012.09.20

Abstract

Results of the comparisons of various density functional theory (DFT) methods with different basis sets for predicting the molecular geometry of TPOP24N-Oxide macrocycle, an oxoporphyrin N-oxide, are reported in this paper. DFT methods, including M06-2X, B3LYP, LSDA, B3PW91, PBEPBE, and BPV86, are examined. Different basis sets, such as 6-$31G^*$, 6-31+G (d, p), 6-311+G (d, p), and 6-311++G (d, p), are also considered. The M06-2X/6-$31G^*$ level is superior to all other density functional methods used in predicting the geometry of TPOP24N-Oxide. The geometries of regioisomeric chlorin N-oxide and oxoporphyrin N-oxide are reported using M06-2X/6-$31G^*$ method. The geometry effects of oxoporphyrin and chlorin N-oxide regioisomers are increased ${\beta}-{\beta}$ bond lengths by N-oxidation because the bond overlap index due to charge transfers is decreased. In N-oxidation ring (II, III), angles that include ${\beta}-{\beta}$ bond length increase as the bond overlap index of ${\beta}-{\beta}$ bond is decreased by N-oxidation. The potential energy surfaces of chlorin N-oxide and oxoporphyrin N-oxide are explored by M06-2X/6-$31G^*$, and single-point calculations are performed at levels up to M06-2X/6-311++G (d, p). Total and relative energies are then calculated. The results indicate that chlorin 24 N-oxides are more stable than chlorin 22 N-oxides in chlorin N-oxide regioisomers. Moreover, TPOP24N-Oxide is less stable than TPOP22N-Oxide.

Keywords

Geometry effects;Chlorin N-oxide;Oxoporphyrin N-oxide regioisomers;DFT

References

  1. Bonnett, R.; Ridge, R. J.; Appelman, E. H. J. Chem. Soc., Chem. Commun. 1978, 310-311.
  2. Balch, A. L.; Chan, Y. W.; Olmstead, M.; Renner, M. W. J. Am. Chem. Soc. 1985, 107, 2393-2398. https://doi.org/10.1021/ja00294a033
  3. Balch, A. L.; Chan, Y. W.; Olmstead, M. M. J. Am. Chem. Soc. 1985, 107, 6510-6514. https://doi.org/10.1021/ja00309a015
  4. Yang, F. A.; Guo, C. W.; Chen, Y. J.; Chen, J. H.; Wang, S. S.; Tung, J. Y.; Hwang, L. P.; Elango, S. Inorg. Chem. 2007, 46, 578- 585. https://doi.org/10.1021/ic0611802
  5. Mizutani, Y.; Watanabe, Y.; Kitagawa, T. J. Am. Chem. Soc. 1994, 116, 3439-3441. https://doi.org/10.1021/ja00087a032
  6. Rachlewicz, K.; Latos-Grazynski, L. Inorg. Chem. 1996, 35, 1136-1147. https://doi.org/10.1021/ic950876k
  7. Groves, J. T.; Watanabe, Y. J. Am. Chem. Soc. 1986, 108, 7836-7837. https://doi.org/10.1021/ja00284a059
  8. Groves, J. T.; Watanabe, Y. J. Am. Chem. Soc. 1988, 110, 8443-8452. https://doi.org/10.1021/ja00233a021
  9. Banerjee, S.; Zeller, M.; Bruckner, C. J. Org. Chem. 2010, 75, 1179-1187. https://doi.org/10.1021/jo9024286
  10. Ghosh, A. In The Porphyrin Handbook; Kardish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: New York, 2000; Vol. 7, p 1.
  11. Shelnutt, J. A. In The Porphyrin Handbook; Kardish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: New York, 2000; Vol. 7, p 167.
  12. Pandey, R. K.; Zheng, G. In The Porphyrin Handbook; Kardish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: New York, 2000; Vol. 6, p 158.
  13. Ghosh, A. Acc. Chem. Res. 1998, 31, 189-198. https://doi.org/10.1021/ar950033x
  14. Chen, D.-M.; Liu, X.; He, T.-J.; Liu, F.-C. Chem. Phys. Lett. 2002, 361, 106-114. https://doi.org/10.1016/S0009-2614(02)00931-4
  15. Sundholm, D. Phys. Chem. Chem. Phys. 2000, 2, 2275-2281. https://doi.org/10.1039/b001923m
  16. Parusel, A. B. J.; Wondimagegen, T.; Gosh, A. J. Am. Chem. Soc. 2000, 122, 6371-6374. https://doi.org/10.1021/ja000757q
  17. Chen, D.-M.; Liu, X.; He, T.-J.; Liu, F.-C. Chem. Phys. 2003, 289, 397-407. https://doi.org/10.1016/S0301-0104(03)00088-0
  18. Kim, Na.; Kim, S.; Kim, J. D.; Huh, D. S.; Shim, Y. K.; Choe, S. J. Bull. Korean Chem. Soc. 2009, 30, 205-213. https://doi.org/10.5012/bkcs.2009.30.1.205
  19. Kim, N.; Kim, S.; Kim, J. D.; Huh, D. S.; Shim, Y. K.; Choe, S. J. Bull. Korean Chem. Soc. 2009, 30, 205-213. https://doi.org/10.5012/bkcs.2009.30.1.205
  20. Huh, D. S.; Choe, S. J. J. Porphyrins Phthalocyanines 2010, 14, 592-604. https://doi.org/10.1142/S1088424610002410
  21. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Peterson, G. A.; Montgometry, J. A.; Raghavacari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. J.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. L.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian, Inc.: Wallingford, CT, 2009.
  22. Mayer, I. J. Comput. Chem. 2007, 28, 204-221. https://doi.org/10.1002/jcc.20494
  23. Brunck, T. K.; weinhold, F. J. Am. Chem. Soc. 1979, 101, 1700- 1709. https://doi.org/10.1021/ja00501a009
  24. Wiberg, K. B. Tetrahedron 1968, 24, 1083-1096. https://doi.org/10.1016/0040-4020(68)88057-3
  25. Feyten, D.; Chaume, G.; Chassaing, G.; Lavielle, S.; Brigaud, T.; Byun, B. J.; Kang, Y. K.; Miclet, E. J. Phys. Chem. B 2012, 116, 4069-4079.
  26. Shaw, J. H. J. Chem. Phys. 1956, 24, 399-402. https://doi.org/10.1063/1.1742486
  27. Caron, A.; Palenik, G. J.; Goldish, E.; Donohue, J. Acta Crystallogr. 1964, 17, 102-108. https://doi.org/10.1107/S0365110X64000342
  28. Chiang, J. F. J. Chem. Phys. 1974, 61, 1280-1283. https://doi.org/10.1063/1.1682050

Cited by

  1. ]furan Halogenation. Importance of HOMO–HOMO Interaction vol.117, pp.35, 2013, https://doi.org/10.1021/jp402257u
  2. Understanding the Interactions of Neptunium and Plutonium Ions with Graphene Oxide: Scalar-Relativistic DFT Investigations vol.118, pp.44, 2014, https://doi.org/10.1021/jp5069945