Comparative Analysis of Benzylideneacetone-derived Compounds on Insect Immunosuppressive and Antimicrobial Activities

벤질리덴아세톤 유도 화합물들의 곤충면역반응 억제와 살균력 비교 분석

  • Seo, Sam-Yeol (Department of Bioresource Sciences, Andong National University) ;
  • Chun, Won-Su (Department of Bioresource Sciences, Andong National University) ;
  • Hong, Yong-Pyo (Department of Applied Chemistry, Andong National University) ;
  • Yi, Young-Keun (Department of Bioresource Sciences, Andong National University) ;
  • Kim, Yong-Gyun (Department of Bioresource Sciences, Andong National University)
  • 서삼열 (안동대학교 자연과학대학 생명자원과학과) ;
  • 천원수 (안동대학교 자연과학대학 생명자원과학과) ;
  • 홍용표 (안동대학교 자연과학대학 응용화학과) ;
  • 이영근 (안동대학교 자연과학대학 생명자원과학과) ;
  • 김용균 (안동대학교 자연과학대학 생명자원과학과)
  • Received : 2012.05.07
  • Accepted : 2012.07.02
  • Published : 2012.09.01


Benzylinedeneacetone (BZA) is a bacterial metabolite which is synthesized by at least two entomopathogenic bacteria, namely Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. It has been shown to possess inhibitory effects on insect cellular and humoral immune responses as well as antimicrobial activities against various species of bacteria and fungi. However, its relatively high phytotoxicity, and nonsystematic effect have thus far prevented its development into an optimal pesticide. This study screened five different BZA derivatives in order to select an optimal compound, which would have relatively high solubility and low phytotoxicity while retaining sufficient degrees of the immunosuppressive and antimicrobial activities associated with BZA. Hydroxylation of the benzene ring of BZA was found to significantly suppress its immunosuppressive and antimicrobial activities. Transformation of the ketone of BZA by carboxylation also suppressed the inhibitory activities. However, a shortening of the aliphatic chain of BZA into acetate form (4-hydroxyphenylacetic acid: HPA) did not decrease the inhibitory activity. HPA also showed much less phytotoxicity against the hot pepper plant Capsicum annuum, when compared to BZA. This study identified an optimal BZA derivative, which exhibited relatively little phytotoxicity, but retained a high degree of inhibitory activity to suppress insect immune responses and antimicrobial activities against plant pathogens.


Grant : 화학농약 대체기술

Supported by : 농촌진흥청


  1. Akhurst, R.J. 1980. Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J. Gen. Microbiol. 121: 303-309.
  2. Broderick, N.A., K.F. Raffa and J. Handelsman. 2006. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. USA. 103: 15196-15199.
  3. Carton, Y., F. Frey, D.W. Stanley, E. Vass and J.N. Antony. 2002. Dexamethasone inhibition of the cellular immune response of Drosophila melanogaster against a parasitoid. J. Parasitol. 88: 405-407.[0405:DIOTCI]2.0.CO;2
  4. Cho, S. and Y. Kim. 2004. Hemocyte apoptosis induced by entomo -pathogenic bacteria, Xenorhabdus and Photorhabdus, in Bombyx mori. J. Asia Pac. Entomol. 7: 195-200.
  5. Gill, S.S., E.A. Cowles and P.V. Pietrantonio. 1992. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 37: 615-636.
  6. Goh, H.G., S.G. Lee, B P. Lee, G.M. Choi and J.H. Kim. 1990. Simple mass-rearing of beet armyworm, Spodoptera exigua. Kor. J. Appl. Entomol. 29: 180-183.
  7. Hoffman, C., H. Vanderbruggen, H. Hofte, J. Van Rie, S. Jansens and H. Van Mellaert. 1988. Specificity of Bacillus thuringiensis delta -endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc. Natl. Acad. Sci. USA 85: 7844-7848.
  8. Jenkins, J.I. and D.H. Dean. 2000. Exploring the mechanism of action of insecticidal proteins by genetic engineering methods. pp. 33-54. In Genetic engineering: principles and methods, vol. 22. ed. by K. Setlow. Plenum, New York.
  9. Jeon, M., W. Cheon. Y. Kim, Y.P. Hong and Y. Yi. 2012. Control effects of indole isolated from Xenorhabdus nematophila K1 on the diseases of red pepper. Res. Plant Dis. 18: 17-23.
  10. Ji, D., Y. Yi, G.H. Kang, Y.H. Choi, P. Kim, N.I. Baek and Y. Kim. 2004. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiol. Lett. 239: 241-248.
  11. Jiang, H. and M.R. Kanost. 2000. The clip-domain family of serine proteinases in arthropods. Insect Biochem. Mol. Biol. 30: 95-105.
  12. Jung, S. and Y. Kim. 2006. Synergistic effect of entomopathogenic bacteria (Xenorhabdus sp. and Photorhabdus temperata ssp. temperata) on the pathogenicity of Bacillus thuringiensis ssp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 35: 1584-1589.[1584:SEOEBX]2.0.CO;2
  13. Kang, S., S. Han and Y. Kim. 2004. Identification of an entomopathogenic bacterium, Photorhabdus temperata subsp. temperata, in Korea. J. Asia Pac. Entomol. 7: 331-337.
  14. Ko, H.S., R.D. Jin, H.B. Krishnan, S.B. Lee and K.Y. Kim. 2009. Biocontrol ability of Lysobacter antibioticus HS124 against Phytophthora blight is mediated by the production of 4-hydroxyphenylacetic aid and several lytic enzymes. Curr. Microbiol. 59: 608-615.
  15. Mao, S., S.J. Lee, H. Hwangbo, Y.W. Kim, K.H. Park, G.S. Cha, R.D. Park and K.Y. Kim. 2006. Isolation and characterization of antifungal substances from Burkholderia sp. culture broth. Curr. Microbiol. 53: 358-364.
  16. Merchant, D., R.L. Ertl, S.I. Rennard, D.W. Stanley and J.S. Miller. 2008. Eicosanoids mediate insect hemocyte migration. J. Insect Physiol. 54: 215-221.
  17. Miller, J.S. 2005. Eicosanoids influence in vitro elongation of plasmatocytes from the tobacco hornworm, Manduca sexta. Arch. Insect Biochem. Physiol. 59: 42-51.
  18. Miller, J.S., T. Nguyen and D.W. Stanley-Samuelson. 1994. Eicosanoids mediate insect nodulation responses to bacterial infections. Proc. Natl. Acad. Sci. USA. 91: 12418-12422.
  19. Ohtani, K., S. Fujioka, T. Kawano, A. Shimada and Y. Kimura. 2011. Nematicidal activities of 4-hydroxyphenylacetic acid and oidiolactone D produced by the fungus Oidiodendron sp. Z. Naturforsch. C. 66: 31-34.
  20. Park, S.J., M.H. Jun, W. Chun, J.A. Seo, Y. Yi, and Y. Kim. 2010. Control effects of benzylideneacetone isolated from Xenorhabdus nematophila K1 on the disease of redpepper plants. Res. Plant Dis. 16: 170-175.
  21. Park, Y. and Y. Kim. 2000. Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophila, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46: 1469-1476.
  22. Radvanyi, F., L. Jordan, F. Russo-Marie and C. Bon. 1989. A sensitive and continuous fluorometric assay for phospholipase $A_{2}$2 using pyrene-labeled phospholipids in the presence of serum albumin. Anal. Biochem. 177: 103-109.
  23. Richards, G.R. and H.B. Goodrich-Blair. 2009. Masters of conquest and pillage: Xenorhabdus nematophila global regulators control transitions from virulence to nutrient acquisition. Cell Microbiol. 11: 1025-1033.
  24. Russel, A.D. and J.R. Furr. 1996. Biocides: mechanisms of antifungal action and fungal resistance. Sci. Prog. 79: 27-48.
  25. SAS Institute, Inc. 1989. SAS/STAT user's guide, release 6.03, Ed. Cary, N.C.
  26. Seo, S.Y., M.Y. Jeon, W.S. Chun, S.H. Lee, J.A. Seo, Y.G. Yi, Y.P. Hong and Y. Kim. 2011. Structure-activity analysis of benzylideneacetone for effective control of plant pests. Kor. J. Appl. Entomol. 50: 107-113.
  27. Seo, S.Y., S.H. Lee, Y.P. Hong and Y. Kim. 2012. Chemical identification and biological characterization of phospholipase A2 inhibitors synthesized by entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Appl. Environ. Microbiol. 78: 3816-3823.
  28. Shrestha, S. and Y. Kim. 2008. Eicosanoids mediate prophenoloxidase release from oenocytoids in the beet armyworm Spodoptera exigua. Insect Biochem. Mol. Biol. 38: 99-112.
  29. Shrestha, S. and Y. Kim. 2009. Biochemical characteristics of immune -associated phospholipase $A_{2}$ and its inhibition by an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. 47: 774-782.
  30. Shrestha, S., D. Stanley and Y. Kim. 2011. $PGE_{2}$ induces oenocytoid cell lysis a G protein-coupled receptor in the beet armyworm, Spodoptera exigua. J. Insect Physiol. 57: 1568-1576.
  31. Srikanth, K., J. Park, D.W. Stanley and Y. Kim. 2011. Plasmatocyte -spreading peptide influences hemocyte behavior via eicosanoids. Arch. Insect Biochem. Physiol. 78: 145-160.
  32. Stanley, D. and Y. Kim. 2011. Prostaglandins and their receptors in insect biology. Front. Endocrinol. 2:105. doi: 10.3389/fendo.2011. 00105.
  33. Yajima, M., M. Takada, N. Takahashi, H. Kikuchi, S. Natori, Y. Oshima and S. Kurata. 2003. A newly established in vitro culture using transgenic Drosophila reveals functional coupling between the phospholipase $A_{2}$-generated fatty acid cascade and lipopolysaccharide- dependent activation of the immune deficiency (imd) pathway in insect immunity. Biochem. J. 37: 205-210.
  34. Zhang, X., N.B. Griko, S.K. Corona and L.A. Bulla, Jr. 2008. Enhanced exocytosis of the receptor BT-$R_{1}$ induced by the Cry1Ab toxin of Bacillus thuringiensis directly correlates to the execution of cell death. Comp. Biochem. Physiol. B 149: 581-588.