DOI QR코드

DOI QR Code

Signal compensation by the light scattering of sample aerosols in ICP-AES

ICP-AES에서 에어로졸의 광산란에 의한 신호의 보정

  • Yeon, Pyung-Hum (Department of Chemistry Education, Korea National University of Education) ;
  • Pak, Yong-Nam (Department of Chemistry Education, Korea National University of Education)
  • 연평흠 (한국교원대학교 화학교육학과) ;
  • 박용남 (한국교원대학교 화학교육학과)
  • Received : 2012.02.21
  • Accepted : 2012.07.23
  • Published : 2012.08.25

Abstract

Analytical signal from ICP was compensated by the light scattering of sample aerosols. Reference scattering signal was generated by a He-Ne or diode laser, monitored for the amount of aerosol producing and used for the compensation of analytical signals. The result showed that significant improvement in precision could be achieved for the short-term signal (within 1 minute) from 3.4% to 0.9% RSD in signal and 14.9% to 4.2% for the long-term (10 minutes) for Be, Pb and Co. This method is very useful not only for the pulse type but for continuous type signals especially when a nebulizer is unstable. To improve long-term precision, higher stability is required in the scattering cell and detector as well as the reduction of noise from the line between a nebulizer and plasma.

Keywords

ICP;signal compensation;light scattering

References

  1. V. Hans, M. Luc and D. J. Richard, J. Anal. At. Spectrom., 9, 815-921 (1994). https://doi.org/10.1039/ja9940900815
  2. S. H. Nam, J. S. Lim and A. Montaser, J. Anal. At. Spectrom., 9, 1357-1364 (1994). https://doi.org/10.1039/ja9940901357
  3. S. Greenfield and A. Montaser, 'Inductively Coupled Plasma in Analytical Atoomic Spectrometry', 2nd Ed., ch4, 187, A. Montaser, D. W. Golightly, ed., VCH, New York, 1992.
  4. R. F. Browner, 'Inductively Coupled Plasma Emission Spectroscopy', Part, ch8, 244, P. W. J. M. Boumans, ed., John Wiley, New York, 1987.
  5. E. Parades, J. Bosque, J. Mermet and J. Todoli, Spectrochim Acta B, 65, 908-917 (2011).
  6. H. Cheng, X. Yin, X. Wang and H. Shen, Talanta, 85, 794-799 (2011). https://doi.org/10.1016/j.talanta.2011.04.075
  7. A. Tyburska, K. Jankowski, A. Ramsza, E. Reszke, M. Strzelec and A. Andrzejc, J. Anal. At. Spectrom., 25, 210-214 (2010). https://doi.org/10.1039/b916729c
  8. M. Hoenig, H. Docekalov'a and H. Baeten, J. Anal. At. Spectrom., 13, 195-199 (1998). https://doi.org/10.1039/a708142a
  9. D. H. Sun, K. W. James and P. M. Thomas, J. Anal. At. Spectrom., 12, 1675-1683 (1997).
  10. B. Budic, J. Anal. At. Spectrom., 13, 869-878 (1998). https://doi.org/10.1039/a801332b
  11. G. J. Schmidt and W. Slavin, Anal. Chem., 54(14), 2491- 2495 (1982). https://doi.org/10.1021/ac00251a020
  12. F. J. Feldman, Anal. Chem., 42, 719-725 (1970). https://doi.org/10.1021/ac60289a011
  13. H. Uchida, Y. Norjiri, H. Haraguchi and K. Fuwa, Anal. Chim. Acta, 123, 57-69 (1981). https://doi.org/10.1016/S0003-2670(01)83158-5
  14. C. Vogiatzis and G. Zachariadis J. Anal. At. Spectrom., 26, 2030-2038 (2011). https://doi.org/10.1039/c1ja10133a
  15. G. Horlick, Spectrochim Acta B, 37(12), 1037-1046 (1982). https://doi.org/10.1016/0584-8547(82)80033-5
  16. F. Fryer, J. Lear, D. Bishop, D. Hare, T. Rawling, L. Kirkup, A. McDonagh and P. Doble, J. Anal. At. Spectrom., 26, 1494-1501 (2011). https://doi.org/10.1039/c0ja00267d
  17. S. A. Myers and D. H. Tracy, Spectrochim. Acta B, 38, 1227-1234 (1983). https://doi.org/10.1016/0584-8547(83)80066-4
  18. J. Marshall, G. Rodgers and W. C. Campbell, J. Anal. At. Spectrom., 13, 241-244 (1988).
  19. N. Furuta, Anal Sci., 18, 1105-1113 (2002). https://doi.org/10.2116/analsci.18.1105
  20. H. Pang, D. R. Wiederin, R. S. Houk and E. S. Yeung, Anal. Chem., 63, 390-397 (1991). https://doi.org/10.1021/ac00004a017
  21. R. J. Watling, J. Anal. At. Spectrom., 13, 927-934 (1998). https://doi.org/10.1039/a800337h
  22. T. Tomokazu, Y. Kensuke, N. Tsutomu and K. Hiroshi, Anal. Sci., 11, 967-977 (1995). https://doi.org/10.2116/analsci.11.967
  23. S. A. Baker, B. W. Smith and J. D. Winefordner, Appl. Spectrosc., 52, 154-161 (1998). https://doi.org/10.1366/0003702981942492
  24. P. Yeon, Y. Cho and Y. Pak, Bull. Kor. Chem. Soc., 20, 1277-1284 (1999).
  25. L. Qinghong and M. B. Ramon, J. Microchemical., 54, 129-143 (1996). https://doi.org/10.1006/mchj.1996.0086
  26. G. H. Vickers, D. A. Wilson and G. M. Hieftje, J. Anal. At. Spectrom., 4, 749-755 (1989). https://doi.org/10.1039/ja9890400749
  27. J. Takahashi and R. Hara, Anal. Sci., 4, 331-339 (1988). https://doi.org/10.2116/analsci.4.331
  28. A. R. Date and A. L. Gray, 'The Application of Inductively Coupled Plasma Mass Spectrometry' Ed., 224, Champan & Hall, London, 1988.
  29. P. D. Goulden and D. H. Anthony, J. Anal. Chem., 56, 2327-2334 (1984). https://doi.org/10.1021/ac00277a014
  30. T. Tanaka, K. Yamamoto, T. Nomizu and H. Kawaguchi, Anal. Sci., 11, 967-977 (1995). https://doi.org/10.2116/analsci.11.967