DOI QR코드

DOI QR Code

Degradation of Phytate Pentamagnesium Salt by Bacillus sp. T4 Phytase as a Potential Eco-friendly Feed Additive

  • Park, In-Kyung ;
  • Lee, Jae-Koo ;
  • Cho, Jaie-Soon
  • Received : 2012.05.18
  • Accepted : 2012.07.09
  • Published : 2012.10.01

Abstract

A bacterial isolate derived from soil samples near a cattle farm was found to display extracellular phytase activity. Based on 16S rRNA sequence analysis, the strain was named Bacillus sp. T4. The optimum temperature for the phytase activity toward magnesium phytate (Mg-$InsP_6$) was $40^{\circ}C$ without 5 mM $Ca^{2+}$ and $50^{\circ}C$ with 5 mM $Ca^{2+}$. T4 phytase had a characteristic bi-hump two pH optima of 6.0 to 6.5 and 7.4 for Mg-$InsP_6$. The enzyme showed higher specificity for Mg-$InsP_6$ than sodium phytate (Na-$InsP_6$). Its activity was fairly inhibited by EDTA, $Cu^{2+}$, $Mn^{2+}$, $Co^{2+}$, $Ba^{2+}$ and $Zn^{2+}$. T4 phytase may have great potential for use as an eco-friendly feed additive to enhance the nutritive quality of phytate and reduce phosphorus pollution.

Keywords

Phytase;Bacillus sp.;Magnesium Phytate;Feed Additive;Phosphorus Pollution

References

  1. Adeola, O. and A. J. Cowieson. 2011. BOARD-INVITED REVIEW: opportunities and challenges in using exogenous enzymes to improve nonruminant animal nutrition. J. Anim. Sci. 89:3189-3218. https://doi.org/10.2527/jas.2010-3715
  2. Altschul, S. F., W. Gish, W. Miller, E. W. Myers and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  3. Bae, H. D., L. J. Yanke, K. J. Cheng and L. B. Selinger. 1999. A novel staining method for detecting phytase activity. J. Microbiol. Methods 39:17-22. https://doi.org/10.1016/S0167-7012(99)00096-2
  4. Casey, A. and G. Walsh. 2003. Purification and characterization of extracellular phytase from Aspergillus niger ATCC 9142. Bioresour. Technol. 86:183-188. https://doi.org/10.1016/S0960-8524(02)00145-1
  5. Cho, J., K. C. Choi, T. Darden, P. R. Reynolds, J. N. Petitte and S. B. Shears. 2006. Avian multiple inositol polyphosphate phosphatase is an active phytase that can be engineered to help ameliorate the planet's phosphate crisis. J. Biotechnol. 126:248-259. https://doi.org/10.1016/j.jbiotec.2006.04.028
  6. Cho, J., J. S. King, X. Qian, A. J. Harwood and S. B. Shears. 2008. Dephosphorylation of 2.3-bisphosphoglycerate by MIPP expands the regulatory capacity of the Rapoport-Luebering glycolytic shunt. Proc. Natl. Acad. Sci. USA. 105:5998-6003. https://doi.org/10.1073/pnas.0710980105
  7. Choi, Y. M., H. J. Suh and J. M. Kim. 2001. Purification and properties of extracellular phytase from Bacillus sp. KHU-10. J. Protein Chem. 20:287-292. https://doi.org/10.1023/A:1010945416862
  8. Fu, S., J. Sun, L. Qian and Z. Li. 2008. Bacillus phytases:present scenario and future perspectives. Appl. Biochem. Biotechnol. 151:1-8. https://doi.org/10.1007/s12010-008-8158-7
  9. Gibson, R. S., K. B. Bailey, M. Gibbs and E. L. Ferguson. 2010. A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability. Food Nutr. Bull. 31:S134-S146.
  10. Greiner, R., U. Konietzny and K. D. Jany. 1993. Purification and characterization of two phytases from Escherichia coli. Arch. Biochem. Biophys. 303:107-113. https://doi.org/10.1006/abbi.1993.1261
  11. Gulati, H. K., B. S. Chadha and H. S. Saini. 2007. Production and characterization of thermostable alkaline phytase from Bacillus laevolacticus isolated from rhizosphere soil. J. Ind. Microbiol. Biotechnol. 34:91-98.
  12. Haefner, S., A. Knietsch, E. Scholten, J. Braun, M. Lohscheidt and O. Zelder. 2005. Biotechnological production and application of phytases. Appl. Microbiol. Biotechnol. 68:588-597. https://doi.org/10.1007/s00253-005-0005-y
  13. Heinonen, J. K. and R. J. Lahti. 1981. A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphate. Anal. Biochem. 113:313-317. https://doi.org/10.1016/0003-2697(81)90082-8
  14. Kebreab, E., A. B. Strathe, A. Yitbarek, C. M. Nyachoti, J. Dijkstra, S. Lopez and J. France. 2011. Modeling the efficiency of phosphorus utilization in growing pigs. J. Anim. Sci. 89:2774-2781. https://doi.org/10.2527/jas.2009-2550
  15. Kerovuo, J., I. Lappalainen and T. Reinikainen. 2000. The metal dependence of Bacillus subtilis phytase. Biochem. Biophys. Res. Commun. 268:365-369. https://doi.org/10.1006/bbrc.2000.2131
  16. Kerovuo, J., M. Lauraeus, P. Nurminen, N. Kalkkinen and J. Apajalahti. 1998. Isolation, characterization, molecular gene cloning and sequencing of a novel phytase from Bacillus subtilis. Appl. Environ. Microbiol. 64:2079-2085.
  17. Kim, Y. O., H. K. Kim, K. S. Bae, J. H. Yu and T. K. Oh. 1998. Purification and properties of a thermostable phytase from Bacillus sp. DS11. Enzyme. Microb. Technol. 22:2-7. https://doi.org/10.1016/S0141-0229(97)00096-3
  18. Lei, X. G. and J. M. Porres. 2003. Phytase enzymology, applications, and biotechnology. Biotechnol. Lett. 25:1787-1794. https://doi.org/10.1023/A:1026224101580
  19. Luo, H., H. Huang, P. Yang, Y. Wang, T. Yuan, N. Wu, B. Yao and Y. Fan. 2007. A novel phytase appA from Citrobacter amalonaticus CGMCC 1696: gene cloning and overexpression in Pichia pastoris. Curr. Microbiol. 55:185-192. https://doi.org/10.1007/s00284-006-0586-4
  20. Mullaney, E. J., C. B. Daly, T. Kim, J. M. Porres, X. G. Lei, K. Sethumadhavan and A. H. J. Ullah. 2002. Site-directed mutagenesis of Aspergillus niger NRRL 3135 phytase at residue 300 to enhance catalysis at pH 4.0. Biochem. Biophys. Res. Commun. 297:1016-1020. https://doi.org/10.1016/S0006-291X(02)02325-2
  21. Mullaney, E. J. and A. H. J. Ullah. 2003. The term phytase comprises several different classes of enzymes. Biochem. Biophys. Res. Commun. 312:179-184. https://doi.org/10.1016/j.bbrc.2003.09.176
  22. Oh, B. C., B. S. Chang, K. H. Park, N. C. Ha, H. K. Kim, B. H. Oh and T. K. Oh. 2001. Calcium dependent catalytic activity of a novel phytase from Bacillus amyloliquefaciens DS11. Biochem. 40:9669-9676. https://doi.org/10.1021/bi010589u
  23. Oh, B. C., W. C. Choi, S. Park, Y. O. Kim and T. K. Oh. 2004. Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Appl. Microbiol. Biotechnol. 63:362-372. https://doi.org/10.1007/s00253-003-1345-0
  24. Powar, V. K. and V. Jagannathan. 1982. Purification and properties of phytase-specific phosphatase from Bacillus subtilis. J. Bacteriol. 151:1102-1108.
  25. Selle, P. H. and V. Ravindran. 2007. Microbial phytase in poultry nutrition. Anim. Feed Sci. Technol. 135:1-41. https://doi.org/10.1016/j.anifeedsci.2006.06.010
  26. Shobirin, A., M. Hussin, A. E. Farouk, R. Greiner, H. M. Salleh and A. F. Ismail. 2007. Phytate-degrading enzyme production by bacteria isolated from Malaysian soil. World J. Microbiol. Biotechnol. 23:1653-1660. https://doi.org/10.1007/s11274-007-9412-9
  27. Sulabo, R. C., C. K. Jones, M. D. Tokach, R. D. Goodband, S. S. Dritz, D. R. Campbell, B. W. Ratliff, J. M. DeRouchey and J. L. Nelssen. 2011. Factors affecting storage stability of various commercial phytase sources. J. Anim. Sci. 89:4262-4271. https://doi.org/10.2527/jas.2011-3948
  28. Tamura, K., J. Dudley, M. Nei and S. Kumar. 2007. MEGA4: Molecular Evolution Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599. https://doi.org/10.1093/molbev/msm092
  29. Tamura, K., M. Nei and S. Kumar. 2004. Prospect for inferring very large phylogenies by using the neighbor-joining methods. Proc. Natl. Acad. Sci. USA. 101:11030-11035. https://doi.org/10.1073/pnas.0404206101
  30. Thompson, J. D., D. G. Higgins and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  31. Tomschy, A., M. Wyss, D. Kostrewa, K. Vogel, M. Tessier, S. Hofer, H. Burgin, A. Kronenberger, R. Remy, A. P. G. M. Van Loon and L. Pasamontes. 2000. Active site residue 297 of Aspergillus niger phytase critically affects the catalytic properties. FEBS Lett. 472:169-172. https://doi.org/10.1016/S0014-5793(00)01456-3
  32. Torres, J., S. Dominguez, F. M. Cerda, G. Obal, A. Mederos, R. F. Irvine, A. Dìaz and C. Kremer. 2005. Solution behavior of myo-inositol hexakisphosphate in the presence of multivalent cations. Prediction of a neutral pentamagnesium species under cytosolic/nuclear conditions. J. Inorg. Biochem. 99:828-840. https://doi.org/10.1016/j.jinorgbio.2004.12.011
  33. Tran, T. T., S. O. Hashim, Y. Gaber, G. Mamo, B. Mattiasson and R. Hatti-Kaul. 2011. Thermostability alkaline phytase from Bacillus sp. MD2: Effect of divalent metals on activity and stability. J. Inorg. Biochem. 105:1000-1007. https://doi.org/10.1016/j.jinorgbio.2011.04.005
  34. Vats, P. and U. C. Banerjee. 2005. Biochemical characterization of extracellular phytase (myo-inositol hexakisphosphate phosphohydrolase) from a hyper-producing strain of Aspergillus niger van Teighem. J. Ind. Microbiol. Biotechnol. 32:141-147. https://doi.org/10.1007/s10295-005-0214-5
  35. William, G. W., M. B. Susan, A. P. Dale and J. L. David. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173:697-703.
  36. Zhang, R., P. Yang, H. Huang, T. Yuan, P. Shi, K. Meng and B. Yao. 2011. Molecular and biochemical characterization of a new alkaline -propeller phytase from the insect symbiotic bacterium Janthinobacterium sp. TN115. Appl. Microbiol. Biotechnol. 92:317-325. https://doi.org/10.1007/s00253-011-3309-0
  37. Zeng, Y. F., T. P. Ko, H. L. Lai, Y. S. Cheng, T. H. Wu, Y. Ma, C. C. Chen, C. S. Yang, R. T. Guo and J. R. Liu. 2011. Crystal structure of Bacillus alkaline phytase in complex with divalent metal ions and inositol hexasulfate. J. Mol. Biol. 409:214-224. https://doi.org/10.1016/j.jmb.2011.03.063

Cited by

  1. Improving the Neutral Phytase Activity from Bacillus amyloliquefaciens DSM 1061 by Site-Directed Mutagenesis vol.175, pp.6, 2015, https://doi.org/10.1007/s12010-015-1495-4
  2. Microbial phytase activity and their role in organic P mineralization vol.61, pp.6, 2015, https://doi.org/10.1080/03650340.2014.963796
  3. Production, characteristics and applications of phytase from a rhizosphere isolated Enterobacter sp. ACSS vol.39, pp.10, 2016, https://doi.org/10.1007/s00449-016-1632-7
  4. RS1 with potential application in plant growth vol.33, pp.3, 2017, https://doi.org/10.1002/btpr.2452

Acknowledgement

Supported by : Konkuk University