Phenolic Composition, Fermentation Profile, Protozoa Population and Methane Production from Sheanut (Butryospermum Parkii) Byproducts In vitro

  • Bhatta, Raghavendra (Energy Metabolism Laboratory, National Institute of Animal Nutrition and Physiology) ;
  • Mani, Saravanan (Energy Metabolism Laboratory, National Institute of Animal Nutrition and Physiology) ;
  • Baruah, Luna (Energy Metabolism Laboratory, National Institute of Animal Nutrition and Physiology) ;
  • Sampath, K.T. (Energy Metabolism Laboratory, National Institute of Animal Nutrition and Physiology)
  • Received : 2012.04.26
  • Accepted : 2012.06.25
  • Published : 2012.10.01


Sheanut cake (SNC), expeller (SNE) and solvent extractions (SNSE) samples were evaluated to determine their suitability in animal feeding. The CP content was highest in SNSE (16.2%) followed by SNE (14.7%) and SNC (11.6%). However, metabolizable energy (ME, MJ/kg) was maximum in SNC (8.2) followed by SNE (7.9) and SNSE (7.0). The tannin phenol content was about 7.0 per cent and mostly in the form of hydrolyzable tannin (HT), whereas condensed tannin (CT) was less than one per cent. The in vitro gas production profiles indicated similar y max (maximum potential of gas production) among the 3 by-products. However, the rate of degradation (k) was maximum in SNC followed by SNE and SNSE. The $t^{1/2}$ (time taken for reaching half asymptote) was lowest in SNC (14.4 h) followed by SNE (18.7 h) and SNSE (21.9 h). The increment in the in vitro gas volume (ml/200 mg DM) with PEG (polyethylene glycol)-6000 (as a tannin binder) addition was 12.0 in SNC, 9.6 in SNE and 11.0 in SNSE, respectively. The highest ratio of $CH_4$ (ml) reduction per ml of the total gas, an indicator of the potential of tannin, was recorded in SNE (0.482) followed by SNC (0.301) and SNSE (0.261). There was significant (p<0.05) reduction in entodinia population and total protozoa population. Differential protozoa counts revealed that Entodinia populations increased to a greater extent than Holotricha when PEG was added. This is the first report on the antimethanogenic property of sheanut byproducts. It could be concluded that all the three forms of SN byproducts are medium source of protein and energy for ruminants. There is a great potential for SN by-products to be incorporated in ruminant feeding not only as a source of energy and protein, but also to protect the protein from rumen degradation and suppress enteric methanogenesis.


  1. Abidemi, T. A., O. J. Adebayo, O. Idowu and M. O. Agbotoba. 2009. Nutrient content and anti-nutritional factors in shea butter (Butryospermum parkii) leaves. Afr. J. Biotechnol. 8: 5885-5890.
  2. Association of Official Analytical Chemists. 1995. Official methods of analysis, 16th edition. Arlington, USA. pp. 4.1-4.17.
  3. Asiegbu, F. O., A. Paterson, I. M. Morrison and J. E. Smith. 1995. Effect of cell wall phenolics and fungal metabolites on methane and acetate production under in vitro conditions. J. Gen. Appl. Microbiol. 41:475-485.
  4. Barnett, A. J. G. and R. L. Reid. 1957. Studies on the production of volatile fatty acids from grass in artificial rumen. 1. Volatile fatty acids production from fresh grasses. J. Agric. Sci. (Cambridge). 48:315-321.
  5. Bhatta, R., Y. Uyeno, K. Tajima, A. Takenaka, Y. Yabumoto, I. Nonaka, O. Enishi and M. Kurihara. 2009. Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production, and methanogenic archaea and protozoal populations. J. Dairy Sci. 92:5512-5522.
  6. Bhatta, R., U. Krishnamoorthy and F. Mohammed. 2001. Effect of tamarind (Tamarindus indica) seed husk tannins on in vitro rumen fermentation. Anim. Feed Sci. Technol. 90:143-152.
  7. Bhatta, R., A. K. Shinde, S.Vaithiyanathan, S. K. Sankhyan and D. L. Verma. 2002. Effect of Polyethylene glycol-6000 on nutrient intake, digestion and growth of kids browsing Prosopis cineraria. Anim. Feed Sci. Technol. 101:45-54.
  8. Bhatta, R., S. Vaithiyanathan, A. K. Shinde and R. C. Jakhmola. 2005. Effect of feeding complete feed block containing Prosopis cineraria leaves and polyethylene glycol (PEG)-6000 on nutrient intake, its utilization, rumen fermentation pattern and rumen enzyme profile in kids. J. Sci. Food Agric. 85:1788-1794.
  9. Conway, E. J. 1957. Micro-diffusion Analysis and Volumetric Error. 4th edn. pp. 277-278. Crossby and Lockwood and Sons Ltd. London.
  10. Dei, H. K., S. P. Rose and A. M. Mackenzi. 2007. Sheanut (Vitellaria paradoxa) meal as a feed ingredient for poultry. World's Poult. Sci. J. 63:611-624.
  11. Dohme, F., A. Machmüller, B. L. Estermann, P. Pfister, A. Wasserfallen and M. Kreuzer. 1999. The role of the rumen ciliate protozoa for methane suppression caused by coconut oil. Lett. Appl. Microbiol. 29:187-192.
  12. Field, J. A. and G. Lettinga. 1987. The methanogenic toxicity and anaerobic degradability of hydrolysable tannin. Water Res. 2: 367-374.
  13. Hess, H. D., M. Kreuzer, T. E. Diaz, C. E. Lascano, J. E. Carulla and C. R. Soliva. 2003. Saponin rich tropical fruits affect fermentation and methanogenesis in faunated and defaunated fluid. Anim. Feed Sci. Technol. 109:79-94.
  14. Hristov, A. N., M. Ivan, L. Neill and T. A. McAllister. 2003. Evaluation of several potential bioactive agents for reducing protozoal activity in vitro. Anim. Feed Sci. Technol. 105:163-184.
  15. Hungate, R. E. 1966. The rumen and its microbes. pp. 26-36. Academic Press, London.
  16. INRA. 2004. Tables of composition and nutritional value of feed materials. 2nd ed. (Ed. D. Sauvant, J. M. Perez and G. Tran) p. 186. Wageningen Academic Publishers, Netherlands.
  17. Jayanegara, A., F. Leiber and M. Kreuzer. 2012. Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. J. Anim. Physiol. Anim. Nut. DOI: 10.1111/j.1439-0396.2011.01172.x
  18. Jouany, J. P. 1994. Manipulation of microbial activity in the rumen. Arch. Anim. Nutr. 46:133-153.
  19. Jouany, J. P. and B. Lassalas. 1997. Study of the adaptation of the rumen ecosystem to the antimethanoginic effect of monensin measured in vivo. Reprod. Nutr. Dev. (Suppl.) S69-S70.
  20. Kamra, D. N., R. K. Sawal, N. N. Pathank, N. Kewalramani and N. Aggarwal. 1991. Diurnal variation in ciliate protozoa in the rumen of black buck (Antelope cervicapra) fed green forage. Lett. Appl. Microbiol. 13:165-167.
  21. Krishnamoorthy, U., H. Soller, H. Steingass and K. H. Menke. 1995. Energy and protein evaluation of tropical feedstuffs for whole tract and ruminal digestion by chemical analyses and rumen inoculum studies in vitro. Anim. Feed Sci. Technol. 52: 177-188.
  22. Kumar, K. M., K. Sudhakar, D. Nagalakshmi, M. Mahender, B. R. Gupta and V. S. T. Rao. 2010. Performance of lactating Murrah buffaloes on sheanut cake (Vitellaria paradoxa) based complete diets. Ind. J. Anim. Nutr. 27:389-395.
  23. Leinmüller, E., H. Steingass and K. H. Menke. 1991. Tannins in feeds for ruminants. II Effects on rumen metabolism in vitro. Ubersichten zur Tierernahrung, 19:45-70.
  24. Leinmuller, E. and K. H. Menke. 1990. Tannine in Futtermittenln fur Wiederkauer. 1. Chemische Eigenschaften und Reaktionen mit Makromolekulen. Ubers. Tierernahr. 18:91-114.
  25. Lipp, M. and E. Anklam. 1998. Review of cocoa butter and alternative fats for use in chocolate-Part A. Composition data. Food Chem. 62:73-97.
  26. Machmüller, A., C. R. Soliva and M. Kreuzer. 2003. Methane suppressing effect of myristic acid in sheep as affected by dietary calcium and forage proportion. Br. J. Nutr. 90:529-540.
  27. Makkar, H. P. S. 2003. Quantification of tannins in tree and shrub foliage - A Laboratory Manual. Joint FAO/IAEA, Division of Nuclear Techniques in Food and Agriculture, Kluwer Academic Publishers, Dordrecht, The Netherlands.
  28. McSweeny, C. S., B. Palmer, D. M. McNeill and D. O. Krause. 2001. Microbial interaction with tannins: nutritional consequences for ruminants. Anim. Feed Sci. Technol. 91:83-93.
  29. Menke, K. H., L. Raab, A. Salewski, H. Steingass, D. Fritz and W. Schneider. 1979. The estimation of digestibility and metabolizable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen inoculum in vitro. J. Agric. Sci. (Cambridge). 93:217-222.
  30. SAS Institute. 2004. SAS/STAT user's guide, release 9.1.3. SAS Institute Inc., Cary, NC, USA.
  31. Sliwinski, B. J., R. S. Carla, A. Machmuller and M. Kreuzer. 2002. Efficacy of plant extracts rich in secondary constituents to modify rumen fermentation. Anim. Feed Sci. Technol. 101:101-114.
  32. Terrill, T. H., G. B. Douglas, A. G. Foote, R. W. Purchas, G. F. Wilson and T. N. Barry. 1992. Effect of condensed tannin upon body growth, wool growth and rumen metabolism in sheep grazing sulla (Hedysarum coronarium) and perennial pasture. J. Agric. Sci. (Cambridge). 119:265-273.
  33. Van Soest, P. J., J. B. Robertson and B. A. Lewis. 1991. Methods for dietary fibre, neutral detergent fibre and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597.
  34. Vogels, G. D., W. F. Hoppe and C. K. Stumm. 1980. Association of methanogenic bacteria with rumen ciliates. Appl. Environ. Microbiol. 39:123-128.
  35. Wang, C. J., S. P. Wang and H. Zhou. 2009. Influences of flavomycin, ropadiar, and saponins on nutrient digestibility, rumen fermentation, and methane emission from sheep. Anim. Feed Sci. Technol. 148:157-166.

Cited by

  1. Assessment of Anti-nutritive Activity of Tannins in Tea By-products Based on In vitro Rumen Fermentation vol.27, pp.11, 2014,
  2. Fermentation Characteristics, Tannin Contents and <i>In vitro</i> Ruminal Degradation of Green Tea and Black Tea By-products Ensiled at Different Temperatures vol.27, pp.7, 2014,
  3. Effect of Grape Pomace Powder, Mangosteen Peel Powder and Monensin on Nutrient Digestibility, Rumen Fermentation, Nitrogen Balance and Microbial Protein Synthesis in Dairy Steers vol.29, pp.10, 2015,
  4. Mobilisporobacter senegalensis gen. nov., sp. nov., an anaerobic bacterium isolated from tropical shea cake vol.66, pp.3, 2016,