Effects of Defaunation on Fermentation Characteristics and Methane Production by Rumen Microbes In vitro When Incubated with Starchy Feed Sources

  • Qin, W.Z. (Department of Animal Science, Chungbuk National University) ;
  • Li, C.Y. (Department of Animal Scicence, Yanbian University) ;
  • Kim, J.K. (Department of Animal Science, Chungbuk National University) ;
  • Ju, J.G. (Department of Animal Science, Chungbuk National University) ;
  • Song, Man-K. (Department of Animal Science, Chungbuk National University)
  • Received : 2012.04.30
  • Accepted : 2012.06.16
  • Published : 2012.10.01


An in vitro experiment was conducted to examine the effects of defaunation (removal of protozoa) on ruminal fermentation characteristics, $CH_4$ production and degradation by rumen microbes when incubated with cereal grains (corn, wheat and rye). Sodium lauryl sulfate as a defaunation reagent was added into the culture solution at a concentration of 0.000375 g/ml, and incubated anaerobically for up to 12 h at $39^{\circ}C$. Following defaunation, live protozoa in the culture solution were rarely observed by microscopic examination. A difference in pH was found among grains regardless of defaunation at all incubation times (p<0.01 to 0.001). Defaunation significantly decreased pH at 12 h (p<0.05) when rumen fluid was incubated with grains. Ammonia-N concentration was increased by defaunation for all grains at 6 h (p<0.05) and 12 h (p<0.05) incubation times. Total VFA concentration was increased by defaunation at 6 h (p<0.05) and 12 h (p<0.01) for all grains. Meanwhile, defaunation decreased acetate and butyrate proportions at 6 h (p<0.05, p<0.01) and 12 h (p<0.01, p<0.001), but increased the propionate proportion at 3 h, 6 h and 12 h incubation (p<0.01 to 0.001) for all grains. Defaunation increased in vitro effective degradability of DM (p<0.05). Production of total gas and $CO_2$ was decreased by defaunation for all grains at 1 h (p<0.05, p<0.05) and then increased at 6 h (p<0.05, p<0.05) and 12 h (p<0.05, p<0.05). $CH_4$ production was higher from faunation than from defaunation at all incubation times (p<0.05).


Defaunation;Grains;Fermentation;Degradation;Total Gas;$CH_4$


  1. Abel, H., B. Schroder, P. Lebzien and G. Flachowsky. 2006. Effects of defaunation on fermentation characteristics and biotin balance in an artificial rumen-simulation system (RUSITEC) receiving diets with different amounts and types of cereal. Br. J. Nutr. 95:99-104.
  2. AOAC. 1995. Official methods of analsis, 13th edn. Association of official analytical chemists, Washington, DC, USA.
  3. Becker, P. M. and P. G. Wikselaar. 2011. Effects of plant antioxidants and natural vicinal diketones on methane production, studied in vitro with rumen fluid and a polylactate as maintenance substrate. Anim. Feed Sci. Technol. 170:201-208.
  4. Castillo, C., J. Benedito, J. Mendez, V. Pereira, M. Lopez-Alonso, M. Miranda and J. Hernandez. 2004. Organic acids as a substitute for monensin in diets for beef cattle. Anim. Feed Sci. Technol. 115:101-116.
  5. Chai, W. Z., A. H. Van Gelder and J. W. Cone. 2004. Relationship between gas production and starch degradation in feed samples. Anim. Feed Sci. Technol. 114:195-204.
  6. Cheng, K. J., C. W. Forsberg, H. Minato and J. W. Costerton. 1991. Microbial ecology and physiology of feed degradation within the rumen. In: Physiological Aspects of Digestion and Metabolism in Ruminants (Ed. R. Kawashima). Academic Press, Toronto, Ont., pp. 595-624.
  7. Coleman, G. S. 1986. The amylase activity of 14 species of entodiniomorphid protozoa and the distribution of amylase in rumen digesta fractions of sheep containing no protozoa or one of seven different protozoal populations. J. Agric. Sci. (Camb.) 107:709-721.
  8. Coleman, G. S. 1992. The rate of uptake and metabolism of starch grains and cellulose particles by Entodinium species, Eudiplodinium maggi, some other entodinomorphid protozoa and natural protozoal populations taken from the ovine rumen. J. Appl. Microbiol. 73:507-513.
  9. Dohme, F., A. Machmüller, B. L. Estermann, P. Pfister, A. Wasserfallen and M. Kreuzer. 1999. The role of the rumen ciliate protozoa for methane suppression caused by coconut oil. Lett. Appl. Microbiol. 29:187-192.
  10. Eugene, M., H. Archimede and D. Sauvant. 2004. Quantitative meta-analysis on the effects of defaunation of the rumen on growth, intake and digestion in ruminants. Livest. Sci. 85:81-97.
  11. Fawcett, J. K. and J. E. Scott. 1960. A rapid and precise method for the determination of urea. J. Clin. Pathol. 13:156-163.
  12. Finlay, B. J., G. Esteban, K. J. Clarke, A. G. Williams, T. M. Embley and R. R. Hirt. 1994. Some rumen ciliates have endosymbiotic methanogens. FEMS. Microbiol. Lett. 117: 157-162.
  13. Hale, W. H. 1973. Influence of processing on the utilization of grains (starch) by ruminant. J. Anim. Sci. 37:1075-1080.
  14. Hegarty, R. S. 1999. Reducing rumen methane emissions through elimination of rumen protozoa. Aust. J. Agric. Res. 50:1321-1327.
  15. Hristov, A. N., M. Ivan, L. M. Rode and T. A. McAllister. 2001. Fermentation characteristics and ruminal ciliate protozoal populations in cattle fed medium-or high- concentrate barley-based diets. J. Anim. Sci. 79:515-524.
  16. Hungate, R. E. 1966. The Rumen and its Microbes. Academic press, New York.
  17. Huntington, G. B. 1997. Starch utilization by ruminants: From basics to the bunk. J. Anim. Sci. 75:852-867.
  18. Huntington, G. B., D. L. Harmon and C. J. Richards. 2006. Site, rates, and limits of starch digestion and glucose metabolism in growing cattle. J. Anim. Sci. 84:14-24.
  19. Johnson, K. A. and D. E. Johnson. 1995. Methane emissions from cattle. J. Anim. Sci. 73:2483-2492.
  20. Kilta, P. T., G. W. Mathison and T. W. Fenton. 1996. Effect of alfalfa root saponins on digestive function in sheep. J. Anim. Sci. 74:1144-1156.
  21. Kiran, D. and T. Mutsvangwa. 2010. Effects of partial ruminal defaunation on urea-nitrogen recycling, nitrogen metabolism, and microbial nitrogen supply in growing lambs fed low or high dietary crude protein concentrations. J. Anim. Sci. 88: 1034-1047.
  22. Kurihara, Y., J. M. Eadie, P. N. Hobson and S. O. Mann. 1968. Relationship between bacteria and ciliate protozoa in the sheep rumen. J. Gen. Microbiol. 5l:267-288.
  23. Kurihara, Y., T. Takechi and F. Shibata. 1978. Relationship between bacteria and ciliate protozoa in the rumen of a sheep fed a purified diet. J. Agric. Sci. (Camb.) 90:373-382.
  24. Lanzas, C., D. G. Fox and A. N. Pell. 2007. Digestion kinetics of dried cereal grains. Anim. Feed Sci. Technol. 136:265-280.
  25. Li, X. Z., C. G. Yan, S. H. Choi, R. J. Long, G. L. Jin and M. K. Song. 2009a. Effects of addition level and chemical type of propionate precursors in dicarboxylic acid pathway on fermentation characteristics and methane production by rumen microbes in vitro. Asian-Aust. J. Anim. Sci. 22:82-89.
  26. Li, X. Z., R. J. Long, C. G. Yan, S. H. Choi, G. L. Jin and M. K. Song. 2010. Rumen microbial responses in fermentation characteristics and production of CLA and methane to linoleic acid in associated with malate or fumarate. Anim. Feed Sci. Technol. 155:132-139.
  27. Li, X. Z., S. H. Choi, G. L. Jin, C. G. Yan, R. J. Long, C. Y. Liang and M. K. Song. 2009b. Linolenic acid in association with malate or fumarate increased CLA production and reduced methane generation by rumen microbes. Asian-Aust. J. Anim. Sci. 22:819-826.
  28. Mackie, R. I., F. M. C. Gilchrist, A. M. Roberts, P. E. Hannah and H. M. Schwartz. 1978. Microbiological and chemical changes in the rumen during the stepwise adaptation of sheep to high concentrate diets. J. Agric. Sci. (Camb.) 90:241-254.
  29. McAllister, T. A. and K. J. Cheng. 1996. Microbial strategies in the ruminal digestion of cereal grains. Anim. Feed Sci. Technol. 62:29-36.
  30. McAllister, T. A., L. M. Rode, D. J. Major, K. J. Cheng and J. G. Buchanan-Smith. 1990c. Effect of ruminal microbial colonization on cereal gram digestion. Can. J. Anim. Sci. 70: 571-579.
  31. Mendoza, G. D., R. A. Britton and R. A. Stock. 1993. Influence of ruminal protozoa on site and extent of starch digestion and ruminal fermentation. J. Anim. Sci. 71:1572-1578.
  32. Mohammed, N., N. Ajisaka, Z. A. Lila, K. Hara, K. Mikuni, K. Hara, S. Kanda and H. Itabashi. 2004. Effect of Japanese horseradish oil on methane production and ruminal fermentation in vitro and in steers. J. Anim. Sci. 82:1839-1846.
  33. Morgavi, D. P., E. Forano, C. Martin and C. J. Newbold. 2010. Microbial ecosystem and methanogenesis in ruminants. Animal 4:1024-1036.
  34. Morgavi, D. P., J. P. Jouany and C. Martin. 2008. Changes in methane emission and rumen fermentation parameters induced by refaunation in sheep. Aust. J. Exp. Agric. 48:69-72.
  35. Nagaraja, T. G., G. Towne and A. A. Beharka. 1992. Moderation of ruminal fermentation by ciliated protozoa in cattle fed a highgrain diet. Appl. Environ. Microbiol. 58:2410-2414.
  36. Newbold, C. J., B. Lassalas and J. P. Jouany. 1995. The importance of methanogens associated with ciliate protozoa in ruminal methane production in vitro. Lett. Appl. Microbiol. 27:230-234.
  37. Offner, A., A. Bach and D. Sauvant. 2003. Quantitative review of in situ starch degradation in the rumen. Anim. Feed Sci. Technol. 106:81-93.
  38. Orskov, E. R. 1986. Starch digestion and utilization in ruminants. J. Anim. Sci. 63:1624-1633.
  39. Orskov, E. R. and I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. (Camb.) 92:499-506.
  40. SAS Inc. 2002. SAS User's guide: Statistical analysis system institute, SAS Inc., Cary, NC, USA.
  41. Schonhusen, U., R. Zitnan, S. Kuhla, W. Jentsch, M. Derno and J. Voiqt. 2003. Effects of protozoa on methane production in rumen and hindgut of calves around time of weaning. Arch. Anim. Nutr. 57:279-295.
  42. Steel, R. G. D. and J. H. Torrie. 1980. Principles and procedures of statistics. Mcgraw Hill Book Co., NY, USA.
  43. Swan, C. G., J. G. P. Bowman, J. M. Martin and M. J. Giroux. 2006. Incresed puroindoline levels slow ruminal digestion of wheat (Triticum aestivum L.) starch by cattle. J. Anim. Sci. 84:641-650.
  44. Van Soest, P. J., J. B.Robertson and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597.
  45. Williams, A. G. and G. S. Coleman. 1992. The Rumen Protozoa. Springer-Verlag, New York, USA.
  46. Williams, A. G. and S. E.Withers. 1991. Effect of ciliate protozoa on the activity of polysaccharide-degrading enzymes and fibre breakdown in the rumen ecosystem. J. Appl. Microbiol.70: 144-155.
  47. Wina, E., S. Muetzel and K. Becker. 2005. The impact of saponins or saponin containing plant materials on ruminant production- A Review. J. Agric. Food. Chem. 53:8093-8105.
  48. Yanez-Ruiz, D. R., B. Macias, E. Pinloche and C. Newbold. 2010. The persistence of bacterial and methanogenic archaeal communities residing in the rumen of yong lambs. FEMS. Microbiol. Ecol. 72:272-278.

Cited by

  1. Effects of Defaunation on Fermentation Characteristics, Degradation of Ryegrass Hay and Methane Production by Rumen Microbes In Vitro When Incubated with Plant Oils vol.34, pp.3, 2014,
  2. Effects of Rumen Protozoa of Brahman Heifers and Nitrate on Fermentation and In vitro Methane Production vol.29, pp.6, 2015,