Characterization of Insertional Variation of Porcine Endogenous Retroviruses in Six Different Pig Breeds

  • Jung, W.Y. (Department of Animal Science and Biotechnology, Chungnam National University) ;
  • Yu, S.L. (Department of Animal Science and Biotechnology, Chungnam National University) ;
  • Seo, D.W. (Department of Animal Science and Biotechnology, Chungnam National University) ;
  • Jung, K.C. (Department of Animal Science and Biotechnology, Chungnam National University) ;
  • Cho, I.C. (National Institute of Animal Science) ;
  • Lim, H.T. (Division of Applied Life Science, Gyeongsang National University) ;
  • Jin, D.I. (Department of Animal Science and Biotechnology, Chungnam National University) ;
  • Lee, Jun-Heon (Department of Animal Science and Biotechnology, Chungnam National University)
  • Received : 2012.03.09
  • Accepted : 2012.05.01
  • Published : 2012.10.01


Pigs may need to be exploited as xenotransplantation donors due to the shortage of human organs, tissues and cells. Porcine endogenous retroviruses (PERVs) are a significant obstacle to xenotransplantation because they can infect human cells in vitro and have the potential for transmission of unexpected pathogens to humans. In this research, 101 pigs, including four commercial breeds (23 Berkshire, 13 Duroc, 22 Landrace and 14 Yorkshire pigs), one native breed (19 Korean native pigs) and one miniature breed (10 NIH miniature pigs) were used to investigate insertional variations for 11 PERV loci (three PERV-A, six PERV-B and two PERV-C). Over 60% of the pigs harbored one PERV-A (907F8) integration and five PERV-B (B3-3G, B3-7G, 742H1, 1155D9 and 465D1) integrations. However, two PERV-A loci (A1-6C and 1347C1) and one PERV-B locus (B3-7F) were absent in Duroc pigs. Moreover, two PERV-C loci (C2-6C and C4-2G) only existed in Korean native pigs and NIH miniature pigs. The results suggest that PERV insertional variations differ among pig breeds as well as among individuals within a breed. Also, the results presented here can be used for the selection of animals that do not have specific PERV integration for xenotransplantation research.


Supported by : Rural Development Administration, National Research Foundation of Korea


  1. Akiyoshi, D. E., M. Denaro, H. Zhu, J. L. Greenstein, P. Banerjee and J. A. Fishman. 1998. Identification of a full-length cDNA for an endogenous retrovirus of miniature swine. J. Virol. 72: 4503-4507.
  2. Allan, J. S., G. A. Rose, J. K. Choo, J. S. Arn, L. Vesga, K. Mawulawde, J. K. Slisz, K. Allison and J. C. Madsen. 1999. Morphometric analyses to predict appropriate donor size for swine-to-human cardiac xenotransplantation. Transplant. Proc. 31:975-977.
  3. Blusch, J. H., C. Patience and U. Martin. 2002. Pig endogenous retroviruses and xenotransplantation. Xenotransplantation 9: 242-251.
  4. Butler, J. E., K. M. Lager, I. Splichal, D. Francis, I. Kacskovics, M. Sinkora, N. Wertz, J. Sun, Y. Zhao, W. R. Brown, R. DeWald, S. Dierks, S. Muyldermans, J. K. Lunney, P. B. McCray, C. S. Rogers, M. J. Welsh, P. Navarro, F. Klobasa, F. Habe and J. Ramsoondar. 2009. The piglet as a model for B cell and immune system development. Vet. Immunol. Immunopathol. 128:147-170.
  5. Denner, J. 2008. Recombinant porcine endogenous retroviruses (PERV-A/C): a new risk for xenotransplantation? Arch. Virol. 153:1421-1426.
  6. Dieckhoff, B., B. Petersen, W. A. Kues, R. Kurth, H. Niemann and J. Denner. 2008. Knockdown of porcine endogenous retrovirus (PERV) expression by PERV-specific shRNA in transgenic pigs. Xenotransplantation 15:36-45.
  7. Fujimura, T., S. Miyagawa, Y. Takahagi, T. Shigehisa and H. Murakami. 2008. Prevalence of porcine endogenous retroviruses in domestic, minature, and genetically modified pigs in Japan. Transplant. Proc. 40:594-595.
  8. Jung, W. Y., J. E. Kim, K. C. Jung, D. I. Jin, C. Moran, E. W. Park, J. T. Jeon and J. H. Lee. 2010. Comparison of PERV genomic locations between Asian and European pigs. Anim. Genet. 41: 89-92.
  9. Le, Tissier. P., J. P. Stoye, Y. Takeuchi, C. Patience and R. A. Weiss. 1997. Two sets of human-tropic pig retrovirus. Nature 389: 681-682.
  10. Lee, J. H. and C. Moran. 2001. Current status of xenotransplantation-A review. Asian-Aust. J. Anim. Sci. 14:1497-1504.
  11. Lee, J. H., G. C. Webb, R. D. M. Allen and C. Moran. 2002. Characterizing and mapping porcine endogenous retroviruses in Western pigs. J. Virol. 76:5548-5556.
  12. Luo, Y., L. Lin, L. Bolund, T. G. Jensen and C. B. Sørensen. 2012. Genetically modified pigs for biomedical research. J. Inherit. Metab. Dis. 35:695-713.
  13. Moalic, Y., H. Felix, Y. Takeuchi, A. Jestin and Y. Blanchard. 2009. Genome areas with high gene density and CpG island neighborhood strongly attract porcine endogenous retrovirus for integration and favor the formation of hot spots. J. Virol. 83:1920-1929.
  14. Matsumoto, H., S. Sasazaki and H. Mannen. 2011. Identification of the gene responsible for chicken muscular dystrophy. Korean J. Poult. Sci. 38:145-154.
  15. Patience, C., Y. Takeuchi and R. A. Weiss. 1997. Infection of human cells by an endogenous retrovirus of pigs. Nat. Med. 3: 282-286.
  16. Park, S. J., J. W. Huh, D. S. Kim, H. S. Ha, Y. D. Jung, K. Ahn, K. B. Oh, E. W. Park, K. T. Chang and H. S. Kim. 2010. Analysis of the molecular and regulatory properties of active porcine endogenous retrovirus gamma-1 long terminal repeats in kidney tissues of the NIH-Miniature pig. Mol. Cells 30:319-325.
  17. Robb, E. A., C. L. Gitter, H. H. Cheng and M. E. Delany. 2011. Chromosomal mapping and candidate gene discovery of chicken developmental mutants and genome-wide variation analysis of MHC congenics. J. Hered. 102:141-156.
  18. Specke, V., S. J. Tacke, K. Boller, J. Schwendemann and J. Denner. 2001. Porcine endogenous retroviruses (PERVs): In vitro host range and attempts to establish small animal models. J. Gen. Virol. 82:837-844.
  19. Specke, V., H. J. Schuurman, R. Plesker, C. Coulibaly, M. Ozel, G. Langford, R. Kurth and J. Denner. 2002. Virus safety in xenotransplantation: first exploratory in vivo studies in small laboratory animals and non-human primates. Transpl. Immunol. 9:281-288.
  20. Specke, V., R. Plesker, C. Coulibaly, K. Boller and J. Denner. 2002. Productive infection of a mink cell line with porcine endogenous retroviruses (PERVs) and lack of transmission to minks in vivo. Arch. Virol. 147:305-319.
  21. Takeuchi, Y., C. Patience, S. Maqre, R. A. Weiss, P. T. Banerjee, P. L. Tissier and J. P. Stoye, J. P. 1998. Host range and interference studies of three classes of pig endogenous retrovirus. J. Virol. 72:9986-9991.
  22. Weiss, R. A. 1998. Transgenic pigs and virus adaptation. Nature 391:327-328.
  23. Wilson, C. A., S. Wong, M. VanBrocklin and M. Federspiel. 2000. Extended analysis of the in vitro tropism of porcine endogenous retrovirus. J. Virol. 74:49-56.
  24. Wilson, C. A. 2008. Porcine endogenous retroviruses and xenotransplantation. Cell. Mol. Life Sci. 65:3399-3412.
  25. Yu, S. L., W. Y. Jung, K. C. Jung, I. C. Cho, H. T. Lim, D. I. Jin and J. H. Lee. 2012. Characterization of porcine endogenous retrovirus (PERV) clones from the NIH miniature pig BAC library. J. Biomed. Biotechnol. In-press.

Cited by

  1. “Ménage à Trois”: The Evolutionary Interplay between JSRV, enJSRVs and Domestic Sheep vol.6, pp.12, 2014,