Evaluation of the Effect of Low Dietary Fermentable Carbohydrate Content on Growth Performance, Nutrient Digestibility, Blood Characteristics, and Meat Quality in Finishing Pigs

  • Hong, S.M. (Department of Animal Resource and Science, Dankook University) ;
  • Hwang, J.H. (Woosung Feed Co., Ltd.) ;
  • Kim, In-Ho (Department of Animal Resource and Science, Dankook University)
  • Received : 2011.11.02
  • Accepted : 2012.02.29
  • Published : 2012.09.01


A total of 96 pigs ($49.23{\pm}3.20$ kg) were used in an 11 wk growth trial to evaluate the effect of fermentable carbohydrate (FC) content on growth performance, apparent total tract digestibility (ATTD) of nutrient, blood profile, and meat quality. The dietary treatments were: i) negative control (NC), basal diet, ii) positive control (PC), NC+antibiotics (positive control diet with 5 ppm flavomycin), iii) PCL, PC-13% lower FC, and iv) NCL, NC-13% lower FC. The growth performance (average daily gain, average daily feed intake, and gain/feed) didn't differ among treatments through the whole experiment. These pigs fed the PCL diet had the greater (p<0.05) apparent total tract digestibility (ATTD) of dry matter than those from PC and NC treatment at the end of the experiment. No differences were observed in white blood cell (WBC), red blood cell (RBC), and lymphocyte concentration among different treatments. After the feeding period, meat samples were collected from the pigs at slaughter. The pigs in NCL and PCL treatments had greater (p<0.05) backfat thickness and lower lean percentage. The color value of loin was higher (p<0.05) in NCL treatment compared to PCL treatment. Also, the NCL treatment had higher (p<0.05) marbling value than PC treatment. The drip loss was depressed by PCL and NCL treatment comapared to NC treatments. The water holding capacity (WHC) was higher (p<0.05) in NC and PCL treatment. In conclusion, the low FC can improve digestibility and meat quality of finishing pigs.


  1. AOAC. 1995. Official method of analysis. 16th edn. Association of Official Analytical Chemists, Washington, DC, USA.
  2. Apple, J. K., C. V. Maxwell, D. C. Brown, K. G. Friesen, R. E. Musser, Z. B. Johnson and T. A. rmstrong. 2004. Effects of dietary lysine and energy density on erformance and carcass characteristics of finishing pigs fed ractopamine. Anim. Sci. 82:3277-3287.
  3. Bikker, P., A. Dirkzwager, J. Fledderus, P. Trevisi, I. le Huёrou-Luron, J. P. Lallёs and A. Awati. 2006. The effect of dietary protein and fermentable carbohydrates levels on growth performance and intestinal characteristics in newly weaned piglets. J. Anim. Sci. 84:3337-3345.
  4. Conn, E. E., P. K. Stumpf, G. Bruening and R. H. Doi. 1987. Outlines of biochemistry. John Wiley & Sons Inc., New York pp. 393-446.
  5. Ducan, D. B. 1955. Multiple range and multiple F tests. Biometrics 11:1-42.
  6. Fernandez, J. A. and V. Danielsen. 2006. Reduceret protein i foderet til okologiske slagtesvin fodret med forskellige maеngderlupin. DJF-Report No. 73.
  7. Goerl, K. F., S. J. Eilert, R. W. Mandigo, H. Y. Chen and P. S. Miller. 1995. Pork characteristics as affected by two populations of swine and six crude protein levels. J. Anim. Sci. 73:3621-3626.
  8. Hansen, L. L., S. Stolzenbach, J. A. Jensen, P. Henckel, J. Hansen-Møller, K. Syriopolos and D. V. Byrne. 2008. Effect of feeding fermentable fibre-rich feedstuff on meat quality with emphasis on chemical and sensory boar taint in entire male and female pigs. Meat Sci. 80:1165-1173.
  9. Honikel, K. O. 1998. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 49:447-457.
  10. Johnston, L. J., A. Renteria and J. Shurson. 2002. Fiber nutrition of sows. In: Proc. 63rd Minnesota Nutrition Conf. Eagan, MN. pp. 217-231.
  11. Kauffman, R. G., G. Eikelenboom, P. G. van der Wal, B. Engel and M. Zaar. 1986. A comparison of methods to estimate waterholding capacity in post-rigor porcine muscle. Meat Sci. 18:307-322.
  12. Knowles, T. A., L. L. Southern, T. D. Bidner, B. J. Kerr and K. G. Friesen. 1998. Effect of dietary fiber or fat in low-crude protein, crystalline amino acid-supplemented diets for finishing pigs. J. Anim. Sci. 76:2818-2832.
  13. Kornegay, E. T. 1981. Soybean hull digestibility by sows and feeding value for growing-finishing swine. J. Anim. Sci. 53:138-145.
  14. Michael de, V. and P. R. Marteau. 2007. Probiotics and prebiotics: effects on diarrhea. J. Nutr. 137:803-811.
  15. Mohn, S., A. M. Gillis, P. J. Moughan and C. F. M. de Lange. 2000. Influence of dietary lysine and energy intakes on body protein deposition and lysine utilization int he growing pig. J. Anim. Sci. 78:1510-1519.
  16. NRC. 1998. Nutrient requirements of swine. 10th rev. ed. Natl. Acad. Press, Washington, DC, USA.
  17. NPPC. 2000. Pork composition and quality assessment procedures. In: National (Ed. E. P. Berg). Pork Producers Council. Des Monies, IA, pp. 1-38.
  18. Pettigrew, J. E., Jr. and R. L. Moser. 1991. Fat in swine nutrition. In: Swine Nutrition (Ed. R. Miller, D. E. Ullrey and A. J. Lewis). pp. 133-146. Butterworth-Heinemann, Stoneham, MA.
  19. Poso, A. R. and E. Puolanne. 2005. Carbohydrate metabolism in meat animals. Meat Sci. 70:423-434.
  20. Rerat, A., M. Fiszlewicz, A. Giusi and P. Vaugelade. 1987. Influence of meal frequency on postprandial variations in the production and absorption of volatile fatty acids in the digestive tract of conscious pigs. J. Anim. Sci. 64:448-456.
  21. SAS Institute. 2001. SAS user's guide. Version 8 ed.SAS Inst. Inc., Cary NC, USA.
  22. Shi, X. S. and J. Noblet. 1993. Contribution of the hindgut to digestion of diets in growing pigs and adult sows: Effect of diet composition. Livest. Prod. Sci. 34:237-252.
  23. Shriver, J. A., S. D. Carter, B. W. Senne and L. A. Pettey. 1999. Effects of adding wheat midds to low crude protein, amino acid supplemented diets for finishing pigs. J. Anim. Sci. 77 (Suppl.1):189(Abstr.).
  24. Shriver, J. A., S. D. Carter, A. L. Sutton, B. T. Richert, B. W. Senne and L. A. Pettey. 2003. Effects of adding fiber sources to reduced-crude protein, amino acid-supplemented diets on nitrogen excretion, growth performance, and carcass traits of finishing pigs. J. Anim. Sci. 81:492-502.
  25. Szabo, C., A. J. M. Jansman, L. Babinszky and M. W. A. Verstegen. 2007. The effect of high dietary fermentable carbohydrate content on the fattening performance and chemical body composition of fattening pigs. Scientific and Professional Review. 13:1-7.
  26. Wang, J. P., S. M. Hong, L.Yan, J. S. Yoo, J. H. Lee, H. D. Jang, H. J. Kim and I. H. Kim. 2009a. Effect of single or carbohydrates cocktail in low-density diets on growth performance, nutrient digestibility, blood characteristics, and carcass traits in growing-finishing pigs. Livest. Sci. 126:215-220.
  27. Wang, J. P., J. S. Yoo, J. H. Lee, H. D. Jang, H. J. Kim, S. S. Seong and I. H. Kim. 2009. Effects of phenyllactic acid on growth performance, nutrient digestibility, microbial shedding, and blood profile in pigs. J. Anim. Sci. 87:3235-3243.
  28. Williams, C. H., D. J. David and O. Iismaa. 1962. The determination of chromic oxide in faeces samples by atomic absorption spectrophotometery. J. Agric. Sci. 59:381-385.
  29. Witte, D. P., M. Ellis, F. K. McKeith and E. R. Wilson. 2000. Effect of dietary lysine level and environmental temperature during the finishing phase on the intramuscular fat content of pork. J. Anim. Sci. 78:1272-1276.
  30. Zhu, J. Q., V. R. Fowler and M. F. Fuller. 1990. Digestion of unmolassed sugar beet pulp in young growing pigs and implications for the growth-supporting values of fermented energy. Anim. Prod. 50:531-539.

Cited by

  1. Characterization of the Fecal Microbial Communities of Duroc Pigs Using 16S rRNA Gene Pyrosequencing vol.28, pp.4, 2015,
  2. sp. in swine: insights from gut microbiota vol.122, pp.3, 2017,
  3. Blood parameters in fattening pigs fed whole-ear corn silage and housed in group pens or in metabolic cages1 vol.93, pp.8, 2015,