Dielectric Properties and Phase Transformation of Poled <001>-Oriented Pb(Mg1/3Nb2/3)O3-PbTiO3 Single Crystals

분극된 <001> 방위 Pb(Mg1/3Nb2/3)O3-PbTiO3 단결정의 유전 특성 및 상전이

  • Received : 2012.06.06
  • Accepted : 2012.06.20
  • Published : 2012.07.27


The dielectric properties and phase transformation of poled <001>-oriented $Pb(Mg_{1/3}Nb_{2/3})O_3-x%PbTiO_3$(PMN-x%PT) single crystals with compositions of x = 20, 30, and 35 mole% are investigated for orientations both parallel and perpendicular to the [001] poling direction. An electric-field-induced monoclinic phase was observed for the initial poled PMN-30PT and PMN-35PT samples by means of high-resolution synchrotron x-ray diffraction. The monoclinic phase appears from $-25^{\circ}C$ to $100^{\circ}C$ and from $-25^{\circ}C$ to $80^{\circ}C$ for the PMN-30PT and PMN-35PT samples, respectively. The dielectric constant (${\varepsilon}$)-temperature (T) characteristics above the Curie temperature were found to be described by the equation$(1/{\varepsilon}-1/{\varepsilon}_m)^{1/n}=(T-T_m)/C$, where ${\varepsilon}_m$ is the maximum dielectric constant and $T_m$ is the temperature giving ${\varepsilon}_m$, and n and C are constants that change with the composition. The value of n was found to be 1.82 and 1.38 for 20PT and 35PT, respectively. The results of mesh scans and the temperature-dependence of the dielectric constant demonstrate that the initial monoclinic phase changes to a single domain tetragonal phase and a to paraelectric cubic phase. In the ferroelectric tetragonal phase with a single domain state, the dielectric constant measured perpendicular to the poling direction was dramatically higher than that measured in the parallel direction. A large dielectric constant implies easier polarization rotation away from the polar axis. This enhancement is believed to be related to dielectric softening close to the morphotropic phase boundary.




  1. S. E. Park and T. R. Shrout, J. Appl. Phys., 82(4), 1804 (1997).
  2. S. E. Park and T. R. Shrout, IEEE Trans. Ultrason. Ferroelectrics Freq. Contr., 44(5), 1140 (1997).
  3. B. Noheda, D. E. Cox, G. Shirane, R. Guo, B. Jones and L. E. Cross, Phys. Rev. B Condens. Matter., 63(1), 014103 (2000).
  4. A. K. Singh and D. Pandey, Phys. Rev. B Condens. Matter., 67(6), 064102 (2003).
  5. F. Li, S. Zhang, Z. Xu, X. Wei, J. Luo, and T. R. Shrout, J. Appl. Phys., 108(3), 034106 (2010).
  6. D. Vanderbilt and M. H. Cohen, Phys. Rev. B Condens. Matter., 63(9), 094108 (2001).
  7. A. K. Singh and D. Pandey, Ferroelectrics, 326(1), 91 (2005).
  8. Z. -G. Ye, B. Noheda, M. Dong, D. Cox and G. Shirane, Phys. Rev. B Condens. Matter., 64(18), 184114 (2001).
  9. B. Noheda, D. E. Cox, G. Shirane, J. Gao and Z. -G. Ye, Phys. Rev. B Condens. Matter., 66(5), 054104 (2002).
  10. Y. Lu, D. -Y. Jeong, Z. -Y. Cheng, Q. M. Zhang, H. -S. Luo, Z. -W. Yin, and D. Viehland, Appl. Phys. Lett., 78(20), 3109 (2001).
  11. N. Novak, G. Cordoyiannis, Z. Kutnjak, Ferroelectrics, 428(1), 43 (2012)
  12. E. -G. Lee and J. Lee, Kor. J. Mater. Res., 21(7), 391 (2011) (in Korean).
  13. M. Kuwabara, S. Takahashi, K. Goda, K. Oshima and K. Watanabe, Jpn. J. Appl. Phys., 31, 3241 (1992)
  14. Z. Feng, X. Zhao and H. Luo, J. Phys. Condens. Matter., 16, 6771 (2004).
  15. D. Viehland and J. F. Li, J. Appl. Phys., 92(12), 7690 (2002).
  16. M. Budimir, D. Damjanovic, N. Setter, Appl. Phys. Lett., 85(14), 2890 (2004).