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FUZZY STABILITY OF THE CAUCHY ADDITIVE AND

QUADRATIC TYPE FUNCTIONAL EQUATION

SunSook Jin and Yang-Hi Lee

Abstract. In this paper, we investigate a fuzzy version of stability for
the functional equation

2f(x+ y) + f(x− y) + f(y − x)− 3f(x) − f(−x) − 3f(y) − f(−y) = 0

in the sense of M. Mirmostafaee and M. S. Moslehian.

1. Introduction

A classical question in the theory of functional equations is “when is it true
that a mapping, which approximately satisfies a functional equation, must be
somehow close to an exact solution of the equation?”. Such a problem, called a

stability problem of the functional equation, was formulated by S. M. Ulam [22]
in 1940. In the next year, D. H. Hyers [6] gave a partial solution of Ulam’s prob-
lem for the case of approximate additive mappings. Subsequently, his result was
generalized by T. Aoki [1] for additive mappings, and by Th. M. Rassias [20] for
linear mappings, to considering the stability problem with unbounded Cauchy
differences. During the last decades, the stability problems of functional equa-
tions have been extensively investigated by a number of mathematicians, see
[4], [5], [7], [9], [10], [12]-[16], [21].

In 1984, A. K. Katsaras [8] defined a fuzzy norm on a linear space to con-
struct a fuzzy structure on the space. Since then, some mathematicians have
introduced several types of fuzzy norm in different points of view. In par-
ticular, T. Bag and S. K. Samanta [2], following Cheng and Mordeson [3],
gave an idea of a fuzzy norm in such a manner that the corresponding fuzzy
metric is of Kramosil and Michalek type [11]. In 2008, A. K. Mirmostafaee
and M. S. Moslehian [18] obtained a fuzzy version of stability for the Cauchy

functional equation:

(1.1) f(x+ y)− f(x)− f(y) = 0.
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In the same year, they [17] proved a fuzzy version of stability for the quadratic

functional equation:

(1.2) f(x+ y) + f(x− y)− 2f(x)− 2f(y) = 0.

A solution of (1.1) is called an additive mapping and a solution of (1.2) is called
a quadratic mapping. Now we consider the functional equation:

(1.3) 2f(x+ y) + f(x− y) + f(y − x)− 3f(x)− f(−x)− 3f(y)− f(−y) = 0

which is called a Cauchy additive and quadratic type functional equation. A
solution of (1.3) is called a quadratic-additive mapping. In 2008, C.-G. Park [19]
obtained a stability of the functional equation (1.3) by taking and composing
an additive mapping A and a quadratic mapping Q to prove the existence of
a quadratic-additive mapping F which is close to the given mapping f . In his

processing, A is approximate to the odd part f(x)−f(−x)
2 of f and Q is close to

the even part f(x)+f(−x)
2 of it, respectively.

In this paper, we get a general stability result of the Cauchy additive and
quadratic type functional equation (1.3) in the fuzzy normed linear space in
the manner of A. K. Mirmostafaee and M. S. Moslehian [17]. To do it, we
introduce a Cauchy sequence {Jnf(x)} starting from a given mapping f , which
converges to the desired mapping F in the fuzzy sense. As we mentioned before,
in previous studies of stability problem of (1.3), he attempted to get stability
theorems by handling the odd and even part of f , respectively. According to
our proposal in this paper, we can take the desired approximate solution F at
only one time. Therefore, this idea is a refinement with respect to the simplicity
of the proof.

2. Main results

We use the definition of a fuzzy normed space given in [2] to exhibit a
reasonable fuzzy version of stability for the quadratic-additive type functional
equation in the fuzzy normed linear space.

Definition 2.1 ([2]). Let X be a real linear space. A function N : X × R →
[0, 1] (the so-called fuzzy subset) is said to be a fuzzy norm on X if for all
x, y ∈ X and all s, t ∈ R,

(N1) N(x, c) = 0 for c ≤ 0;
(N2) x = 0 if and only if N(x, c) = 1 for all c > 0;
(N3) N(cx, t) = N(x, t/|c|) if c 6= 0;
(N4) N(x+ y, s+ t) ≥ min{N(x, s), N(y, t)};
(N5) N(x, ·) is a non-decreasing function on R and limt→∞ N(x, t) = 1.

The pair (X,N) is called a fuzzy normed linear space. Let (X,N) be a fuzzy
normed linear space. Let {xn} be a sequence in X . Then {xn} is said to be
convergent if there exists x ∈ X such that limn→∞ N(xn − x, t) = 1 for all
t > 0. In this case, x is called the limit of the sequence {xn} and we denote
it by N − limn→∞ xn = x. A sequence {xn} in X is called Cauchy if for each
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ε > 0 and each t > 0 there exists n0 such that for all n ≥ n0 and all p > 0 we
have N(xn+p − xn, t) > 1 − ε. It is known that every convergent sequence in
a fuzzy normed space is Cauchy. If each Cauchy sequence is convergent, then
the fuzzy norm is said to be complete and the fuzzy normed space is called a

fuzzy Banach space.

Let (X,N) be a fuzzy normed space and (Y,N ′) a fuzzy Banach space. For
a given mapping f : X → Y , we use the abbreviation

Df(x, y) := 2f(x+ y) + f(x− y) + f(y− x)− 3f(x)− f(−x)− 3f(y)− f(−y)

for all x, y ∈ X . For given q > 0, the mapping f is called a fuzzy q-almost

quadratic-additive mapping, if

(2.1) N ′(Df(x, y), t+ s) ≥ min{N(x, sq), N(y, tq)}

for all x, y ∈ X and all s, t ∈ (0,∞). Now we get the general stability result in
the fuzzy normed linear space.

Theorem 2.2. Let q be a positive real number with q 6= 1
2 , 1. And let f be a

fuzzy q-almost quadratic-additive mapping from a fuzzy normed space (X,N)
into a fuzzy Banach space (Y,N ′). Then there is a unique quadratic-additive

mapping F : X → Y such that

(2.2)

N ′(F (x) − f(x), t) ≥











supt′<t N
(

x, (2− 2p)qt′
q)

if q > 1,

supt′<t N
(

x,
(

(4−2p)(2p−2)
2

)q

t′
q
)

if 1
2 < q < 1

supt′<t N
(

x, (2p − 4)qt′
q)

if 0 < q < 1
2

for each x ∈ X and t > 0, where p = 1/q.

Proof. It follows from (2.1) and (N4) that

N ′(f(0), t) = N ′(Df(0, 0), 4t) ≥ N (0, (2t)q) = 1

for all t ∈ (0,∞). By (N2), we have f(0) = 0. We will prove the theorem in
three cases, q > 1, 1

2 < q < 1, and 0 < q < 1
2 .

Case 1. Let q > 1 and let Jnf : X → Y be a mapping defined by

Jnf(x) =
1

2

(

4−n (f(2nx) + f(−2nx)) + 2−n (f(2nx)− f(−2nx))
)

for all x ∈ X . Notice that J0f(x) = f(x) and

(2.3) Jjf(x)−Jj+1f(x) =
2j+1 − 1

4j+2
Df(−2jx,−2jx)−

2j+1 + 1

4j+2
Df(2jx, 2jx)

for all x ∈ X and j ≥ 0. Together with (N3), (N4) and (2.1), this equation
implies that if n+m > m ≥ 0, then

N ′

(

Jmf(x)− Jn+mf(x),
n+m−1
∑

j=m

1

2

(

2p

2

)j

tp
)

(2.4)
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≥ N ′





n+m−1
∑

j=m

(Jjf(x)− Jj+1f(x)) ,

n+m−1
∑

j=m

1

2

(

2p

2

)j

tp





≥ min
n+m−1
⋃

j=m

{

N ′

(

Jjf(x)− Jj+1f(x),
1

2

(

2p

2

)j
)

tp

}

≥ min

n+m−1
⋃

j=m

{

min

{

N ′

(

−
(2j+1 + 1)Df(2jx, 2jx)

4j+2
,
(2j+1 + 1)2jptp

8 · 4j

)

,

N ′

(

(2j+1 − 1)Df(−2jx,−2jx)

4j+2
,
(2j+1 − 1)2jptp

8 · 4j

)}}

≥ min

n+m−1
⋃

j=m

{

N(2jx, 2jt)
}

= N(x, t)

for all x ∈ X and t > 0. Let ε > 0 be given. Since limt→∞ N(x, t) = 1, there
is t0 > 0 such that

N(x, t0) ≥ 1− ε.

Observe that for some t̃ > t0, the series
∑∞

j=0
1
2

(

2p

2

)j
t̃p converges for p = 1

q
<

1. It guarantees that, for an arbitrary given c > 0, there exists n0 ≥ 0 such
that

n+m−1
∑

j=m

1

2

(

2p

2

)j

t̃p < c

for each m ≥ n0 and n > 0. Together with (N5) and (2.4), this implies that

N ′(Jmf(x)− Jn+mf(x), c)

≥ N ′



Jmf(x)− Jn+mf(x),
n+m−1
∑

j=m

1

2

(

2p

2

)j

t̃p





≥ N(x, t̃) ≥ N(x, t0) ≥ 1− ε

for all x ∈ X . Hence {Jnf(x)} is a Cauchy sequence in the fuzzy Banach space
(Y,N ′), and so we can define a mapping F : X → Y by

F (x) := N ′ − lim
n→∞

Jnf(x).

Moreover, if we put m = 0 in (2.4), we have

N ′(f(x)− Jnf(x), t) ≥ N



x,
tq

(

∑n−1
j=0

1
2

(

2p

2

)j
)q



(2.5)
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for all x ∈ X . Next we will show that F is the desired quadratic additive
function. Using (N4), we have

N ′(DF (x, y), t)

(2.6)

≥ min

{

N ′

(

2F (x+ y)− 2Jnf(x+ y),
t

14

)

, N ′

(

F (x− y)− Jnf(x− y),
t

14

)

,

N ′

(

F (y − x) − Jnf(y − x),
t

14

)

, N ′

(

3Jnf(x)− 3F (x),
t

14

)

,

N ′

(

Jnf(−x)− F (−x),
t

14

)

, N ′

(

3Jnf(y)− 3F (y),
t

14

)

,

N ′

(

Jnf(−y)− F (−y),
t

14

)

, N ′

(

DJnf(x, y),
t

2

)}

for all x, y ∈ X and n ∈ N. The first seven terms on the right hand side of
(2.6) tend to 1 as n → ∞ by the definition of F and (N2), and the last term
holds

N ′

(

DJnf(x, y),
t

2

)

≥ min

{

N ′

(

Df(2nx, 2ny)

2 · 4n
,
t

8

)

, N ′

(

Df(−2nx,−2ny)

2 · 4n
,
t

8

)

,

N ′

(

Df(2nx, 2ny)

2 · 2n
,
t

8

)

, N ′

(

Df(−2nx,−2ny)

2 · 2n
,
t

8

)}

for all x, y ∈ X . By (N3) and (2.1), we obtain

N ′

(

Df(±2nx,±2ny))

2 · 4n
,
t

8

)

= N ′

(

Df(±2nx,±2ny),
4nt

4

)

≥ min

{

N

(

2nx,

(

4nt

8

)q)

, N

(

2ny,

(

4nt

8

)q)}

≥ min

{

N

(

x,
2(2q−1)n

23q
tq
)

, N

(

y,
2(2q−1)n

23q
tq
)}

and

N ′

(

Df(±2nx,±2ny))

2 · 2n
,
t

8

)

≥min

{

N

(

x,
2(q−1)n

23q
tq
)

, N

(

y,
2(q−1)n

23q
tq
)}

for all x, y ∈ X and n ∈ N. Since q > 1, together with (N5), we can deduce
that the last term of (2.6) also tends to 1 as n → ∞. It follows from (2.6) that

N ′(DF (x, y), t) = 1

for each x, y ∈ X and t > 0. By (N2), this means that DF (x, y) = 0 for all
x, y ∈ X .
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Next we approximate the difference between f and F in a fuzzy sense. For
an arbitrary fixed x ∈ X and t > 0, choose 0 < ε < 1 and 0 < t′ < t. Since F
is the limit of {Jnf(x)}, there is n ∈ N such that

N ′ (F (x)− Jnf(x), t− t′) ≥ 1− ε.

By (2.5), we have

N ′(F (x)− f(x), t) ≥ min {N ′ (F (x)− Jnf(x), t− t′) , N ′ (Jnf(x)− f(x), t′)}

≥ min







1− ε,N



x,
t′
q

(

1
2

∑n−1
j=0

(

2p

2

)j
)q











≥ min
{

1− ε,N
(

x, (2− 2p)qt′
q)}

.

Because 0 < ε < 1 is arbitrary, we get the inequality (2.2) in this case. Finally,
to prove the uniqueness of F , let F ′ : X → Y be another quadratic-additive
mapping satisfying (2.2). Then by (2.3), we get

(2.7)

{

F (x)− JnF (x) =
∑n−1

j=0 (JjF (x) − Jj+1F (x)) = 0

F ′(x) − JnF
′(x) =

∑n−1
j=0 (JjF

′(x) − Jj+1F
′(x)) = 0

for all x ∈ X and n ∈ N. Together with (N4) and (2.2), this implies that

N ′(F (x)− F ′(x), t)

= N ′(JnF (x) − JnF
′(x), t)

≥ min

{

N ′

(

JnF (x) − Jnf(x),
t

2

)

, N ′

(

Jnf(x)− JnF
′(x),

t

2

)}

≥ min

{

N ′

(

(F − f)(2nx)

2 · 4n
,
t

8

)

, N ′

(

(f − F ′)(2nx)

2 · 4n
,
t

8

)

,

N ′

(

(F − f)(−2nx)

2 · 4n
,
t

8

)

, N ′

(

(f − F ′)(−2nx)

2 · 4n
,
t

8

)

,

N ′

(

(F − f)(2nx)

2 · 2n
,
t

8

)

, N ′

(

(f − F ′)(2nx)

2 · 2n
,
t

8

)

,

N ′

(

(F − f)(−2nx)

2 · 2n
,
t

8

)

, N ′

(

(f − F ′)(−2nx)

2 · 2n
,
t

8

)}

≥ sup
t′<t

N
(

x, 2(q−1)n−2q(2 − 2p)qt′
q
)

for all x ∈ X and n ∈ N. Observe that, for q = 1
p
> 1, the last term of the above

inequality tends to 1 as n → ∞ by (N5). This implies thatN ′(F (x)−F ′(x), t) =
1 and so we get

F (x) = F ′(x)

for all x ∈ X by (N2).



FUZZY STABILITY OF THE CAUCHY ADDITIVE AND QUADRATIC 529

Case 2. Let 1
2 < q < 1 and let Jnf : X → Y be a mapping defined by

Jnf(x) =
1

2

(

4−n (f(2nx) + f(−2nx)) + 2n
(

f
( x

2n

)

− f
(

−
x

2n

)))

for all x ∈ X . Then we have J0f(x) = f(x) and

Jjf(x)− Jj+1f(x) =−
1

4j+2
Df(2jx, 2jx)−

1

4j+2
Df(−2jx,−2jx)

+ 2j−2Df
( x

2j+1
,

x

2j+1

)

− 2j−2Df

(

−x

2j+1
,
−x

2j+1

)

for all x ∈ X and j ≥ 0. If n+m > m ≥ 0, then we have

N ′

(

Jmf(x)− Jn+mf(x),

n+m−1
∑

j=m

(

1

4

(

2p

4

)j

+
1

2p

(

2

2p

)j
)

tp
)

≥ min

n+m−1
⋃

j=m

{

min

{

N ′

(

Df(2jx, 0)

2 · 4j+1
,

2jptp

2 · 4j+1

)

,

N ′

(

Df(−2jx, 0)

2 · 4j+1
,

2jptp

2 · 4j+1

)

, N ′

(

−2j−1Df
( x

2j+1
, 0
)

,
2j−1tp

2(j+1)p

)

,

N ′

(

2j−1Df
(

−
x

2j+1
, 0
)

,
2j−1tp

2(j+1)p

)}}

≥ min

n+m−1
⋃

j=m

{

N(2jx, 2jt), N

(

x

2j+1
,

t

2j+1

)}

= N(x, t)

for all x ∈ X and t > 0. In the similar argument following (2.4) of the previous
case, we can define the limit F (x) := N ′ − limn→∞ Jnf(x) of the Cauchy
sequence {Jnf(x)} in the Banach fuzzy space Y . Moreover, putting m = 0 in
the above inequality, we have

(2.8) N ′(f(x) − Jnf(x), t) ≥ N



x,
tq

(

∑n−1
j=0

(

1
4

(

2p

4

)j
+ 1

2p

(

2
2p

)j
))q





for each x ∈ X and t > 0. To prove that F is a quadratic additive function, we
have enough to show that the last term of (2.6) in Case 1 tends to 1 as n → ∞.
By (N3) and (2.1), we get

N ′

(

DJnf(x, y),
t

2

)

≥ min

{

N ′

(

Df(2nx, 2ny)

2 · 4n
,
t

8

)

, N ′

(

Df(−2nx,−2ny

2 · 4n
,
t

8

)

,

N ′

(

2n−1Df
( x

2n
,
y

2n

)

,
t

8

)

, N ′

(

2n−1Df

(

−x

2n
,
−y

2n

)

,
t

8

)}
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≥ min

{

N(x, 2(2q−1)n−3qtq), N(y, 2(2q−1)n−3qtq),

N(x, 2(1−q)n−3qtq), N(y, 2(1−q)n−3qtq)

}

for each x, y ∈ X and t > 0. Observe that all the terms on the right hand
side of the above inequality tend to 1 as n → ∞, since 1

2 < q < 1. Hence,
together with the similar argument after (2.6), we can say that DF (x, y) = 0
for all x, y ∈ X . Recall, in Case 1, the inequality (2.2) follows from (2.5). By
the same reasoning, we get (2.2) from (2.8) in this case. Now to prove the
uniqueness of F , let F ′ be another quadratic additive mapping satisfying (2.2).
Then, together with (N4), (2.2), and (2.7), we have

N ′(F (x)− F ′(x), t)

= N ′(JnF (x) − JnF
′(x), t)

≥ min

{

N ′

(

JnF (x) − Jnf(x),
t

2

)

, N ′

(

Jnf(x)− JnF
′(x),

t

2

)

}

≥ min

{

N ′

(

(F − f)(2nx)

2 · 4n
,
t

8

)

,

(

(f − F ′)(2nx)

2 · 4n
,
t

8

)

,

N ′

(

(F − f)(−2nx)

2 · 4n
,
t

8

)

, N ′

(

(f − F ′)(−2nx)

2 · 4n
,
t

8

)

,

N ′

(

2n−1
(

(F − f)
( x

2n

))

,
t

8

)

, N ′

(

2n−1
(

(f − F ′)
( x

2n

))

,
t

8

)

,

N ′

(

2n−1

(

(F − f)

(

−x

2n

))

,
t

8

)

, N ′

(

2n−1

(

(f − F ′)

(

−x

2n

))

,
t

8

)}

≥ min

{

sup
t′<t

N

(

x, 2(2q−1)n−2q

(

(4 − 2p)(2p − 2)

2

)q

t′
q

)

,

sup
t′<t

N

(

x, 2(1−q)n−2q

(

(4− 2p)(2p − 2)

2

)q

t′
q

)}

for all x ∈ X and n ∈ N. Since limn→∞ 2(2q−1)n−2q = limn→∞ 2(1−q)n−2q = ∞
in this case, both terms on the right hand side of the above inequality tend
to 1 as n → ∞ by (N5). This implies that N ′(F (x) − F ′(x), t) = 1 and so
F (x) = F ′(x) for all x ∈ X by (N2).

Case 3. Finally, we take 0 < q < 1
2 and define Jnf : X → Y by

Jnf(x) =
1

2

(

4n
(

f(2−nx) + f(−2−nx)
)

+ 2n
(

f
( x

2n

)

− f
(

−
x

2n

)))

for all x ∈ X . Then we have J0f(x) = f(x) and

Jjf(x)− Jj+1f(x) =(4j−1 + 2j−2)Df
( x

2j+1
,

x

2j+1

)
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+ (4j−1 − 2j−2)Df

(

−x

2j+1
,
−x

2j+1

)

which implies that if n+m > m ≥ 0, then

N ′

(

Jmf(x)− Jn+mf(x),
n+m−1
∑

j=m

(

4

2p

)j
tp

2p

)

≥ min

n+m−1
⋃

j=m

{

min

{

N ′

(

(4j−1+2j−2)Df
( x

2j+1
,

x

2j+1

)

,
(22j−1 + 2j−1)tp

2(j+1)p

)

,

N ′

(

(4j−1 − 2j−2)Df
(

−
x

2j+1
,−

x

2j+1

)

,
(22j−1 − 2j−1)tp

2(j+1)p

)}}

≥ min

n+m−1
⋃

j=m

{

N

(

x

2j+1
,

t

2j+1

)}

= N(x, t)

for all x ∈ X and t > 0. Similar to the previous cases, it leads us to define the
mapping F : X → Y by F (x) := N ′ − limn→∞ Jnf(x). Putting m = 0 in the
above inequality, we have

(2.9) N ′(f(x)− Jnf(x), t) ≥ N



x,
tq

(

1
2p

∑n−1
j=0

(

4
2p

)j
)q





for all x ∈ X and t > 0. Notice that

N ′

(

DJnf(x, y),
t

2

)

≥ min

{

N ′

(

4n

2
Df

( x

2n
,
y

2n

)

,
t

8

)

, N ′

(

4n

2
Df

(

−x

2n
,
−y

2n

)

,
t

8

)

,

N ′

(

2n−1Df
( x

2n
,
y

2n

)

,
t

8

)

, N ′

(

2n−1Df

(

−x

2n
,
−y

2n

)

,
t

8

)}

≥ min

{

N
(

x, 2(1−2q)n−3qtq
)

, N
(

y, 2(1−2q)n−3qtq
)

,

N
(

x, 2(1−q)n−3qtq
)

, N
(

y, 2(1−q)n−3qtq
)

}

for each x, y ∈ X and t > 0. Since 0 < q < 1
2 , all terms on the right hand

side tend to 1 as n → ∞, which implies that the last term of (2.6) tends to 1
as n → ∞. Therefore, we can say that DF ≡ 0. Moreover, using the similar
argument after (2.6) in Case 1, we get the inequality (2.2) from (2.9) in this
case. To prove the uniqueness of F , let F ′ : X → Y be another quadratic
additive function satisfying (2.2). Then by (2.7), we get

N ′(F (x)− F ′(x), t)



532 SUNSOOK JIN AND YANG-HI LEE

≥ min

{

N ′

(

JnF (x) − Jnf(x),
t

2

)

, N ′

(

Jnf(x)− JnF
′(x),

t

2

)}

≥ min

{

N ′

(

4n

2

(

(F − f)
( x

2n

))

,
t

8

)

, N ′

(

4n

2

(

(f − F ′)
( x

2n

))

,
t

8

)

,

N ′

(

4n

2

(

(F − f)
(

−
x

2n

))

,
t

8

)

, N ′

(

4n

2

(

(f − F ′)
(

−
x

2n

))

,
t

8

)

,

N ′

(

2n−1
(

(F − f)
( x

2n

))

,
t

8

)

, N ′

(

2n−1
(

(f − F ′)
( x

2n

))

,
t

8

)

,

N ′

(

2n−1

(

(F − f)

(

−x

2n

))

,
t

8

)

, N ′

(

2n−1

(

(f − F ′)

(

−x

2n

))

,
t

8

)}

≥ sup
t′<t

N
(

x, 2(1−2q)n−2q (2p − 4)q t′
q
)

for all x ∈ X and n ∈ N. Observe that, for 0 < q < 1
2 , the last term tends to 1

as n → ∞ by (N5). This implies thatN ′(F (x)−F ′(x), t) = 1 and F (x) = F ′(x)
for all x ∈ X by (N2). �

Remark 2.3. Consider a mapping f : X → Y satisfying (2.1) for all x, y ∈ X
and a real number q < 0. Take any t > 0. If we choose a real number s with
0 < 2s < t, then we have

N ′(Df(x, y), t) ≥ N ′(Df(x, y), 2s) ≥ min{N(x, sq), N(y, sq)}

for all x, y ∈ X . Since q < 0, we have lims→0+ sq = ∞. This implies that

lim
s→0+

N(x, sq) = lim
s→0+

N(y, sq) = 1

and so

N ′(Df(x, y), t) = 1

for all x, y ∈ X and t > 0 . By (N2), it allows us to get Df(x, y) = 0 for all
x, y ∈ X . In other words, f is itself a quadratic additive mapping if f is a fuzzy
q-almost quadratic-additive mapping for the case q < 0.

Corollary 2.4. Let f be an even mapping satisfying all of the conditions of

Theorem 2.2. Then there is a unique quadratic mapping F : X → Y such that

(2.10) N ′(F (x) − f(x), t) ≥ sup
t′<t

N
(

x, (|4− 2p|t′)
q)

for all x ∈ X and t > 0, where p = 1/q.

Proof. Let Jnf be defined as in Theorem 2.2. Since f is an even mapping, we
obtain

Jnf(x) =

{

f(2nx)+f(−2nx)
2·4n if 0 < q < 1

2 ,
1
2 (4

n (f(2−nx) + f(−2−nx))) if q > 1
2
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for all x ∈ X . Notice that J0f(x) = f(x) and

Jjf(x)−Jj+1f(x)=

{

−1
4j+2 (Df(2jx, 2jx)+Df(−2jx,−2jx)) if 0 < q < 1

2 ,
4j−1

(

Df
(

x
2j+1 ,

x
2j+1

)

+Df
(

−x
2j+1 ,

−x
2j+1

))

if q > 1
2

for all x ∈ X and j ∈ N∪{0}. From these, using the similar method in Theorem
2.2, we obtain the quadratic-additive mapping F satisfying (2.10). Notice that
F is also even, F (x) := N ′ − limn→∞ Jnf(x) for all x ∈ X , and DF (x, y) = 0
for all x, y ∈ X . Hence, we get

F (x+ y) + F (x − y)− 2F (x)− 2F (y) =
1

2
DF (x, y) = 0

for all x, y ∈ X . This means that F is a quadratic mapping. �

Corollary 2.5. Let f be an odd mapping satisfying all of the conditions of

Theorem 2.2. Then there is a unique additive mapping F : X → Y such that

(2.11) N ′(F (x) − f(x), t) ≥ sup
t′<t

N
(

x, (|2− 2p|t′)
q)

for all x ∈ X and t > 0, where p = 1/q.

Proof. Let Jnf be defined as in Theorem 2.2. Since f is an odd mapping, we
obtain

Jnf(x) =

{

f(2nx)+f(−2nx)
2n+1 if 0 < q < 1,

2n−1 (f(2−nx) + f(−2−nx)) if q > 1

for all x ∈ X . Notice that J0f(x) = f(x) and

Jjf(x)−Jj+1f(x)=

{

1
2j+3 (Df(−2jx,−2jx)−Df(2jx, 2jx)) if 0 < q < 1
2j−2

(

Df
(

x
2j+1 ,

x
2j+1

)

−Df
(

−x
2j+1 ,

−x
2j+1

))

if q > 1

for all x ∈ X and j ∈ N∪{0}. From these, using the similar method in Theorem
2.2, we obtain the quadratic-additive mapping F satisfying (2.11). Notice that
F is also odd, F (x) := N ′ − limn→∞ Jnf(x) for all x ∈ X , and DF (x, y) = 0
for all x, y ∈ X . Hence, we get

F (x+ y)− F (x)− F (y) =
1

2
DF (x, y) = 0

for all x, y ∈ X . This means that F is an additive mapping. �

We can use Theorem 2.2 to get a classical result in the framework of normed
spaces. Let (X, ‖ · ‖) be a normed linear space. Then we can define a fuzzy
norm NX on X by following

NX(x, t) =

{

0, t ≤ ‖x‖
1, t > ‖x‖

where x ∈ X and t ∈ R, see [17]. Suppose that f : X → Y is a mapping into a
Banach space (Y, ||| · |||) such that

|||Df(x, y)||| ≤ ‖x‖p + ‖y‖p
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for all x, y ∈ X , where p > 0 and p 6= 1, 2. Let NY be a fuzzy norm on Y .
Then we get

NY (Df(x, y), s+ t) =

{

0, s+ t ≤ |||Df(x, y)|||
1, s+ t > |||Df(x, y)|||

for all x, y ∈ X and s, t ∈ R. Consider the case NY (Df(x, y), s + t) = 0. This
implies that

‖x‖p + ‖y‖p ≥ ‖|Df(x, y)‖| ≥ s+ t

and so either ‖x‖p ≥ s or ‖y‖p ≥ t in this case. Hence, for q = 1
p
, we have

min{NX(x, sq), NX(y, tq)} = 0

for all x, y ∈ X and s, t > 0. Therefore, in every case, the inequality

NY (Df(x, y), s+ t) ≥ min{NX(x, sq), NX(y, tq)}

holds. It means that f is a fuzzy q-almost quadratic additive mapping, and by
Theorem 2.2, we get the following stability result.

Corollary 2.6. Let (X, ‖ · ‖) be a normed linear space and let (Y, ||| · |||) be a

Banach space. If

|||Df(x, y)||| ≤ ‖x‖p + ‖y‖p

for all x, y ∈ X, where p > 0 and p 6= 1, 2, then there is a unique quadratic-

additive mapping F : X → Y such that

|||F (x)− f(x)||| ≤











||x||p

2−2p if 0 < p < 1,
2||x||p

(2−2p)(2p−4) if 1 < p < 2,
||x||p

2p−4 if 2 < p

for all x ∈ X.
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