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FUZZY STABILITY OF THE CAUCHY ADDITIVE AND
QUADRATIC TYPE FUNCTIONAL EQUATION

SUNSOOK JIN AND YANG-HI LEE

ABSTRACT. In this paper, we investigate a fuzzy version of stability for
the functional equation

2f(x+y)+ flz—y) + fly — ) = 3f(z) — f(—=) —=3f(y) — f(~y) =0

in the sense of M. Mirmostaface and M. S. Moslehian.

1. Introduction

A classical question in the theory of functional equations is “when is it true
that a mapping, which approximately satisfies a functional equation, must be
somehow close to an exact solution of the equation?”. Such a problem, called a
stability problem of the functional equation, was formulated by S. M. Ulam [22]
in 1940. In the next year, D. H. Hyers [6] gave a partial solution of Ulam’s prob-
lem for the case of approximate additive mappings. Subsequently, his result was
generalized by T. Aoki [1] for additive mappings, and by Th. M. Rassias [20] for
linear mappings, to considering the stability problem with unbounded Cauchy
differences. During the last decades, the stability problems of functional equa-
tions have been extensively investigated by a number of mathematicians, see
4, (5], [7], [9), [10], [12J-[16], [21].

In 1984, A. K. Katsaras [8] defined a fuzzy norm on a linear space to con-
struct a fuzzy structure on the space. Since then, some mathematicians have
introduced several types of fuzzy norm in different points of view. In par-
ticular, T. Bag and S. K. Samanta [2], following Cheng and Mordeson [3],
gave an idea of a fuzzy norm in such a manner that the corresponding fuzzy
metric is of Kramosil and Michalek type [11]. In 2008, A. K. Mirmostafaee
and M. S. Moslehian [18] obtained a fuzzy version of stability for the Cauchy
functional equation:

(1.1) f@+y) = fx) = fly) =0
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In the same year, they [17] proved a fuzzy version of stability for the quadratic
functional equation:

(1.2) fleaty)+ fle—y)—2f(x) = 2f(y) =0.
A solution of (1.1) is called an additive mapping and a solution of (1.2) is called
a quadratic mapping. Now we consider the functional equation:

(L3) 2f(@+y)+ fle—y)+ fly—=x) = 3f(x) = f(=2) = 3f(y) = f(-y) =0
which is called a Cauchy additive and quadratic type functional equation. A
solution of (1.3) is called a quadratic-additive mapping. In 2008, C.-G. Park [19]
obtained a stability of the functional equation (1.3) by taking and composing
an additive mapping A and a quadratic mapping @ to prove the existence of
a quadratic-additive mapping F' which is close to the given mapping f. In his
processing, A is approximate to the odd part w of f and @ is close to
the even part W of it, respectively.

In this paper, we get a general stability result of the Cauchy additive and
quadratic type functional equation (1.3) in the fuzzy normed linear space in
the manner of A. K. Mirmostafaee and M. S. Moslehian [17]. To do it, we
introduce a Cauchy sequence {J,, f(x)} starting from a given mapping f, which
converges to the desired mapping F' in the fuzzy sense. As we mentioned before,
in previous studies of stability problem of (1.3), he attempted to get stability
theorems by handling the odd and even part of f, respectively. According to
our proposal in this paper, we can take the desired approximate solution F at
only one time. Therefore, this idea is a refinement with respect to the simplicity
of the proof.

2. Main results

We use the definition of a fuzzy normed space given in [2] to exhibit a
reasonable fuzzy version of stability for the quadratic-additive type functional
equation in the fuzzy normed linear space.

Definition 2.1 ([2]). Let X be a real linear space. A function N : X x R —
[0,1] (the so-called fuzzy subset) is said to be a fuzzy norm on X if for all
z,y € X and all s,t € R,
(N1) N(z,¢) =0 for ¢ < 0;
(N2) z = 0 if and only if N(z,c¢) =1 for all ¢ > 0;
(N3) N(ex,t) = N(x,t/|c|) if ¢ # 0;
(N4) N(z +y,s+t) > min{N(z,s), N(y,t) };
(N5) N(z,-) is a non-decreasing function on R and lim;_,o N(z,t) = 1.

The pair (X, N) is called a fuzzy normed linear space. Let (X, N) be a fuzzy
normed linear space. Let {z,} be a sequence in X. Then {z,} is said to be
convergent if there exists € X such that lim, o N(z, — z,t) = 1 for all
t > 0. In this case, z is called the limit of the sequence {x,} and we denote
it by N —limy 00 2, = 2. A sequence {z,} in X is called Cauchy if for each
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€ > 0 and each t > 0 there exists ng such that for all n > ng and all p > 0 we
have N(zp4p — @pn,t) > 1 —e. It is known that every convergent sequence in
a fuzzy normed space is Cauchy. If each Cauchy sequence is convergent, then
the fuzzy norm is said to be complete and the fuzzy normed space is called a
fuzzy Banach space.

Let (X, N) be a fuzzy normed space and (Y, N') a fuzzy Banach space. For
a given mapping f : X — Y, we use the abbreviation

Df(x,y) =2f(x+y)+ flx—y)+ fly—2) = 3f(x) - f(—2) = 3f(y) - f(-y)
for all z,y € X. For given ¢ > 0, the mapping f is called a fuzzy g-almost
quadratic-additive mapping, if

(2.1) N'(Df(z,y),t +s) > min{N(z,s?), N(y,t9)}

for all z,y € X and all s,t € (0,00). Now we get the general stability result in
the fuzzy normed linear space.

Theorem 2.2. Let q be a positive real number with q # %, 1. And let f be a
fuzzy gq-almost quadratic-additive mapping from a fuzzy normed space (X, N)
into a fuzzy Banach space (Y,N'). Then there is a unique quadratic-additive
mapping F': X =Y such that

(2.2)
supy, N (r, (2= 20)90%) if q>1,
N'(F(z) = f(2),t) > { supy_, N ( ((4 2)(20— 2>) ¢ ) if L<g<i
supy ¢ N (z, (28 — 4)%"1) if 0<g<42

for each x € X and t > 0, where p =1/q.
Proof. Tt follows from (2.1) and (N4) that
N'(f(0),t) = N'(Df(0,0),4t) > N (0, (2t)7) = 1
for all ¢ € (0,00). By (N2), we have f(0) = 0. We will prove the theorem in
threecases,q>1,%<q<1, and0<q<%.
Case 1. Let ¢ > 1 and let J,,f : X — Y be a mapping defined by

Jaf (@) = 5 (47 (F@") + F(-2"0)) + 27 (f(2"0) — [(~2"2))
for all x € X. Notlce that Jof(z) = f(ac) and

2j+1 . , 27+l 1 o

for all z € X and j > 0. Together with (N3), (N4) and (2.1), this equation
implies that if n +m > m > 0, then

(2.4) N’<Jmf(z) - Jnmf(z),n%_l% <§>jtp>

j=m
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) n+m—1 ‘ ‘ n—i—m—ll 9p 7 )
>N Y Uif@) = Tiaf@), Y (5 ) ¢
j=m j=m
n+m—1

\%

z

=)
L

N (ij@c) @) s (%)) tp}

, "+m—1{min{N, (_(2j+1 +1)Df(29z,27z) (P + 1)2””15”)

Vv

=t

=
\'C

43+2 ’ 8. 47
j=m
N (@ DDV, —Da) (P - 1)20rer
45+2 ' 8 .47
n+m—1 ) ]
>min () {N@z,2t)}=N(,1)
j=m

for all z € X and ¢t > 0. Let € > 0 be given. Since lim;,o, N(z,t) = 1, there
is to > 0 such that
N(SC,to) > 1—e.
Observe that for some t > tg, the series Z;io i (%)] tP converges for p = % <
1. Tt guarantees that, for an arbitrary given ¢ > 0, there exists ng > 0 such
that
n+m—1 1 9p 7 ~
— — tp <
> 5(3) e
j=m

for each m > ng and n > 0. Together with (N5) and (2.4), this implies that

NI(Jmf(w) = Jntmf(2),¢)

n+m—1 ]
> N T f (@) = Jogmf(x), D %<£>35p

j=m

> N(z,t) > N(z,t0) >1—¢

for all x € X. Hence {J,, f(z)} is a Cauchy sequence in the fuzzy Banach space
(Y, N’), and so we can define a mapping F': X — Y by

F(z):=N'— lim J,f(z).

n—oo

Moreover, if we put m = 0 in (2.4), we have

(25) N/(f($) - Jnf(x)7t> > N €z,
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for all z € X. Next we will show that F' is the desired quadratic additive
function. Using (N4), we have

(2.6)
N'(DF(2,y),t)

> min {N’(QF(x—i—y) —2J.f(z +v), 1—t4) ,N’(F(ac —y) = Inf(z—y), ﬁ)a

N (Pl =) = dufl =) 57 ) N (3uf10) = 3P 37 ).
t t

1)V (300 - 37w 77 ).
Nt = Pl ) N (Das ) |

for all z,y € X and n € N. The first seven terms on the right hand side of
(2.6) tend to 1 as n — oo by the definition of F' and (N2), and the last term
holds

N’ <Jn f(—a) — F(~z)

N (Danfe0)5)
s win {0 (D222 0 (DA ) 1),

240 '8 2. 4n 8
N/ Df(2n$a 2ny) E N/ Df(—2n.’L" _2ny) E
2.2m '8 )’ 2.2m '8

for all z,y € X. By (N3) and (2.1), we obtain
N <Df(:|:2":c,:|:2”y)) t>

2.4n '8

o o () o (5))

) 2(2¢—1)n . 9(2¢—1)n .
min {N (w, Tt ) , N (y, 534 t )}
and

Df(£2nz, £2"y)) t 2(a=1n 2(a=1n
N’ F(&E2", y))7 — | >min<{N |z, ——1t?),N |y, 4
2. 21 8 234 234
for all z,y € X and n € N. Since ¢ > 1, together with (N5), we can deduce
that the last term of (2.6) also tends to 1 as n — co. It follows from (2.6) that
N'(DF(z,y),t) =1

for each z,y € X and t > 0. By (N2), this means that DF(z,y) = 0 for all
z,y € X.

4t
=N <Df(j:2"z, +27y), —>

Y

Y
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Next we approximate the difference between f and F' in a fuzzy sense. For
an arbitrary fixed z € X and ¢t > 0, choose 0 < e < 1 and 0 <t < t. Since F
is the limit of {J, f(x)}, there is n € N such that

N' (F(z) — Jpof(z),t —t') >1—¢.
By (2.5), we have
N'(F(x) = f(x),t) = min {N" (F(z) = Jnf(2),t =t'), N" (Jnf(2) = f(2),1')}
44
(3505 (%))
>min {1 —¢e,N (z,(2-27)7t'"")}.

>min< 1—¢,N | z, 7

Because 0 < € < 1 is arbitrary, we get the inequality (2.2) in this case. Finally,
to prove the uniqueness of F, let I/ : X — Y be another quadratic-additive
mapping satisfying (2.2). Then by (2.3), we get

@ F(x) = J,F(x) = Y12 (J;F(2) — Jj F@) = 0
| F'(@) = JuF"(@) = YiZg (i (@) = i1 (@) =
for all z € X and n € N. Together with (N4) and (2.2), this implies that
N'(F(z) - F'(),1)
= N'(JnF(x) = JoF'(x),1)

> mln{ ( n nf(2), %), N’ (Jnf(x)—JnFl(x)a %)}
s ain o (520 ;53” 3w (5 )
)

s e
e ) e )
> s/ugN x,2<q*1>"*2%2 — 2P)ap'

for all x € X and n € N. Observe that, for ¢ = % > 1, the last term of the above
inequality tends to 1 as n — oo by (N5). This implies that N'(F(z)—F’(z),t) =
1 and so we get

F(x) = F'(x)

for all z € X by (N2).
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Case 2. Let 1 5 <g<1landlet J,f: X — Y be a mapping defined by

Tnf(@) =3 (4—" (f(2"2) + f(—2"z)) + 2" (f (2%) y (72%)))
for all z € X. Then we have Jof(z) = f(x) and

1 S 1 . .
Jif(x) = Jjp1f(x) =— me(Qj:c,sz) — 4j+2Df(72]:c,—2J:c)

9 x s —x -z
+272Df (2J+1’ 2J+1) —¥ns (W F)

forall x € X and 7 > 0. If n+m > m > 0, then we have

V(s (0) - Tt S (i (%) v L (;)) )

j=m

n+m-—1 ; ;
. . Df(272,0) 2P¢P
/ >
m1n{N< 0. 1 .41l )

Df(~2/x,0) 2irew e 0i 1y

< 2-4t1 ’2'4”1) N Df<23+1’0)’2(j+1>p )
.

1 [ oj—1 oz 297t

N (2 Df( 2J’+1’0) ’9(i+1)p

. ; ; T t
Z min U N(2].’I],2Jt),N (W,F)}

= N(z,t)

Vv

g

=
\‘C

for all z € X and t > 0. In the similar argument following (2.4) of the previous
case, we can define the limit F(z) := N’ — limy, o J,f(z) of the Cauchy
sequence {J, f(z)} in the Banach fuzzy space Y. Moreover, putting m = 0 in
the above inequality, we have

4
n—1 (1 (2pr 214\\?

(i (G E& +%(2)))

for each z € X and ¢t > 0. To prove that F' is a quadratic additive function, we

have enough to show that the last term of (2.6) in Case 1 tends to 1 as n — co.
By (N3) and (2.1), we get

t
N/ (Djnf(zay)v §>
Zmin N/ Df21'2 E $72yat ’
247 '8 2.4n 8

R A

(28) N/(f(x) - Jnf(z)a t) > N €z,
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> min {N(x, 2(2q—1)n—3qtq)’ N(y, 2(2q—1)n—3qtq),
N(x,2(1_‘1)”_3%‘1),N(y,2<1_q>n_3qt‘1)}

for each z,y € X and t > 0. Observe that all the terms on the right hand
side of the above inequality tend to 1 as n — oo, since % < q < 1. Hence,
together with the similar argument after (2.6), we can say that DF(x,y) =0
for all z,y € X. Recall, in Case 1, the inequality (2.2) follows from (2.5). By
the same reasoning, we get (2.2) from (2.8) in this case. Now to prove the
uniqueness of F', let F’ be another quadratic additive mapping satisfying (2.2).
Then, together with (N4), (2.2), and (2.7), we have

N'(F(x) = F'(x),t)
= N'(J,F(x) — J,F'(z),t)

N mm{ (JnF (x),g) N (Jnf(:c)—JnF’(x),%)}
o () (02

s
< 24” > <f §4nn)é>
v (0 ) g) v (7 (- ) )

v e ( ) (- () 2)

2min{31g;]\7< 91— 2q<(4 27)( 2p2)) )

s (a0 (B2 =2 ) ) |

for all € X and n € N. Since lim,,_,oc 22977720 = lim,,_,,, 2079720 = o0
in this case, both terms on the right hand side of the above inequality tend
to 1 as m — oo by (N5). This implies that N'(F(x) — F'(z), t) = 1 and so
F(z) = F'(z) for all x € X by (N2).

Case 3. Finally, we take 0 < g < % and define J,f: X — Y by

Tf@) =5 (1 (fe ) + -2 42 (F (o) £ (~om)))

2n 2n
for all x € X. Then we have Jyf(z) = f(z) and

Jif(@) = Jjer f(x) =(4771 + 277 2)Df(2a+1’2yx+1)
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i1 o —x —x
+ 4 —27)Df (2j+1, 2j+1)

which implies that if n +m > m > 0, then

N,(Jmf(x) — Jngmf (), nimfl (%)j ;_Z)

Jj=m

1 2j—1 J—1\4p
. / j—1 j—2 X X ) (2 —+ 2 )t
) {mm {N <(4 +275)DS (2j+1’ 2j+1 )7 2(i+1)p ’
Jj=m
. . 2j—1 _ 2j—1 P
/ j=1 _ oj—2 _ & _ £ ) (2 )
N <(4 275)Df ( 2i+17  9j+1 )7 20+1p

x t
N (2j+1 7 9j+1 ) }

for all x € X and t > 0. Similar to the previous cases, it leads us to define the
mapping F': X = Y by F(z) := N’ — limy,_,00 Jn f(x). Putting m = 0 in the
above inequality, we have

n+m-—

\%

z

=)
-

vV

=

=
R
L C s
/—’HH

= N(z,t)

(2'9) N/(f(l') - Jnf(x)at) >N |z,

1 —n—1/41/\?
(z_p i (3v) )
for all z € X and ¢ > 0. Notice that

t

NI (DJnf('rvy)a 5)
4 ¢ o x oyt
min { N’ —Df(i,i),— N (Zpp(=22Y) L
o I\ e )3 2 onon )8
t — —
N (27'Df (o2 ) o< ) N (277 Df (o
9n n) 3 g on

min {N (x, 2(1—211)71—3%11) N (y, 2(1—2q)n—3qtq) ,

v

)

Y

N (m, 2(1—11)71—3%11) N (y, 2(1—q)n—3qtq) }

for each z,y € X and t > 0. Since 0 < ¢ < %, all terms on the right hand
side tend to 1 as n — oo, which implies that the last term of (2.6) tends to 1
as n — oo. Therefore, we can say that DF = 0. Moreover, using the similar
argument after (2.6) in Case 1, we get the inequality (2.2) from (2.9) in this
case. To prove the uniqueness of F, let I/ : X — Y be another quadratic

additive function satisfying (2.2). Then by (2.7), we get
N'(F(z) — F'(x),t)
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JoF(z) — Jnf(z), %) N (J"f(x) = (@), %) }
)

(-0 () 4) (5 (0-m1(2)-1).
(F@E-n(5)5)w (Fle-m(-5)
N’<2"1 ((Ff)(%))vé)’fv' (2”1((fF/)(2in) ’ >
Nv(whl(uv—f>(§§)),é)’N”(T“l(““F”(ig))’é)}

for all x € X and n € N. Observe that, for 0 < g < %, the last term tends to 1
asn — oo by (N5). This implies that N'(F(x)—F'(z),t) = 1 and F(x) = F'(z)
for all x € X by (N2). O

\Y

z.

=
—N

<

V
E.
=
—N
=
7 N N
=

Remark 2.3. Consider a mapping f : X — Y satisfying (2.1) for all z,y € X
and a real number g < 0. Take any ¢ > 0. If we choose a real number s with
0 < 2s < t, then we have

N'(Df(z,y),t) > N'(Df(2,y),2s) > min{N(z,s?), N(y,s?)}
for all z,y € X. Since g < 0, we have lim,_,¢+ s? = co. This implies that

lim N(z,s?) = lim N(y,s?) =1

s—0t s—0t
and so
N'(Df(z,y),t) =1
for all z,y € X and ¢t > 0 . By (N2), it allows us to get Df(x,y) = 0 for all

z,y € X. In other words, f is itself a quadratic additive mapping if f is a fuzzy
g-almost quadratic-additive mapping for the case ¢ < 0.

Corollary 2.4. Let f be an even mapping satisfying all of the conditions of
Theorem 2.2. Then there is a unique quadratic mapping F : X =Y such that

(2.10) N'(F(x) = f(a).) 2 sup N (. (14 - 27]t)")

for allz € X and t > 0, where p =1/q.

Proof. Let J,, f be defined as in Theorem 2.2. Since f is an even mapping, we
obtain

f"z)+f(=2"x) ; 1
Jnf(x):{ ) n2.74n . . }f 0<({<2,
s (f27"z) + f(=27"))) if ¢> 3
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for all x € X. Notice that Jyf(x) = f(z) and

T (Df(22,272)+ Df(—27x, —27x))  if 0<qg< 3
Jif(x)—J; x)= 4J‘t2( ez 2. 2L . 27
jf( ) ]+1f( ) { 47 1 (Df(21+1a 2]‘+1)+Df(21'+1a 21’+1)) lf q > %

forallz € X and j € NU{0}. From these, using the similar method in Theorem
2.2, we obtain the quadratic-additive mapping F satisfying (2.10). Notice that
F is also even, F(z) := N’ — lim, o0 Jnf(2) for all z € X, and DF(x,y) =0
for all z,y € X. Hence, we get

1
Flz+y)+ Fz —y) - 2F(z) - 2F(y) = ;DF(z,y) = 0
for all z,y € X. This means that F' is a quadratic mapping. (]

Corollary 2.5. Let f be an odd mapping satisfying all of the conditions of
Theorem 2.2. Then there is a unique additive mapping F' : X — Y such that

(2.11) N'(F(@) = f(x).1) 2 sup N (z. (2 = 21¢)')

forallz € X and t >0, where p=1/q.

Proof. Let J, f be defined as in Theorem 2.2. Since f is an odd mapping, we
obtain
f@ )+ f(~2"x) ;
Jnf(x): . 2n+17 ~ }f 0<q<1,
2" (f(2 ") + f(—=27"x))  if ¢>1
for all x € X. Notice that Jyf(x) = f(z) and
= (Df (=272, —272)—Df(27x,272)) if 0<qg<1
Jif(x)—J; €T)= 2J't3( z , T —z’ —x :

@)= fl@) { 272 (Df (g5, 55) —Df (5. 57)) if q>1
forallz € X and j € NU{0}. From these, using the similar method in Theorem
2.2, we obtain the quadratic-additive mapping F' satisfying (2.11). Notice that
F is also odd, F(z) := N’ —limy,e0 Jp f(x) for all x € X, and DF(z,y) =0
for all z,y € X. Hence, we get

1
F(z +y) - F(z) - Fy) = 5DF(z,y) =0
for all z,y € X. This means that F' is an additive mapping. ([

We can use Theorem 2.2 to get a classical result in the framework of normed
spaces. Let (X, || - ||) be a normed linear space. Then we can define a fuzzy
norm Nx on X by following

Nx(z,1) {

where € X and t € R, see [17]. Suppose that f: X — Y is a mapping into a
Banach space (Y,]|| - |||) such that

HIDf G, y)lll < [l + [lyl”

0, &< ||
Lot> |
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for all z,y € X, where p > 0 and p # 1,2. Let Ny be a fuzzy norm on Y.
Then we get

{0, s+t<|IDf@ )l
N“”““”“”‘{ 1, s+t>|[Df(z )]

for all x,y € X and s,t € R. Consider the case Ny (D f(z,y),s +t) = 0. This
implies that
=" + [lyl” = 1Df (=, y)l[| = s+

and so either ||z||? > s or |ly||P > t in this case. Hence, for ¢ = %, we have
min{Nx (z,s?), Nx(y,t?)} =0
for all z,y € X and s,t > 0. Therefore, in every case, the inequality
Ny (Df(z,y),s+t) > min{Nx(x, s?), Nx(y,t?)}

holds. It means that f is a fuzzy ¢g-almost quadratic additive mapping, and by
Theorem 2.2, we get the following stability result.

Corollary 2.6. Let (X,]||-||) be a normed linear space and let (Y, ||| -1||) be a
Banach space. If

DS @, Il < Nl + llyl”

for all x,y € X, where p > 0 and p # 1,2, then there is a unique quadratic-
additive mapping F': X =Y such that

T if 0<p<l,
2|z || .
IF@ - @l < { ooy 1<p<2
2 if 2<p
forallx € X.
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