• Received : 2011.07.05
  • Published : 2012.07.31


In this paper, we introduce the notions of Smarandache weak BE-algebra, Q-Smarandache filters and Q-Smarandache ideals. We show that a nonempty subset F of a BE-algebra X is a Q-Smarandache filter if and only if $A(x,y){\subseteq}F$, which A($x,y$) is a Q-Smarandache upper set The relationship between these notions are stated and proved.


  1. S. S. Ahn and K. S. So, On generalized upper sets in BE-algebras, Bull. Korean Math. Soc. 46 (2009), no. 2, 281-287.
  2. S. S. Ahn and K. S. So, On ideals and upper sets in BE-algebras, Sci. Math. Jpn. 68 (2008), no. 2, 279-285.
  3. A. Borumand Saeid, A. Ahadpanah, and L. Torkzadeh, Smarandache BL-algebra, J. Appl. Log. 8 (2010), 235-261.
  4. A. Borumand Saeid and A. Namdar, Smarandache BCH-algebra, World Applied Sciences Journal 7 (2009), 77-83.
  5. W. B. V. Kandasamy, Smarandache gropoids, Smaran-dache/Groupoids.pdf.
  6. H. S. Kim and Y. H. Kim, On BE-algebras, Sci. Math. Jpn. Online e-2006 (2006), 1299-1302.
  7. H. K. Kyung, A Note on CI-algebras, Int. Math. Forum, 6 (2011), no. 1, 1-5.
  8. B. L. Meng, CI-algebra, Sci. Math. Jpn. Online e-2009 (2009), 695-701.
  9. R. Padilla, Smarandache algebraic structures, Bull. Pure Appl. Sci. Sect. E Math. Stat. 17E (1998), no. 1, 119-121
  10. A. Rezaei and A. Borumand Saeid, Some results in BE-algebras, Analele Universitatii Oradea Fasc. Matematica, Tom XIX (2012), 33-44.