Antimicrobial Effect of Carvacrol against Cariogenic and Periodontopathic Bacteria

치아우식증 및 치주질환 원인균에 대한 Carvacrol의 항균효과

  • Park, Soon-Nang (Department of Oral Biochemistry, School of Dentistry, Chosun University) ;
  • Lee, Dong-Kyun (Department of Conservative Dentistry, School of Dentistry, Chosun University) ;
  • Lim, Yun-Kyong (Department of Oral Biochemistry, School of Dentistry, Chosun University) ;
  • Kim, Hwa-Sook (Department of Dental Hygiene, Chunnam Techno College) ;
  • Cho, Eu-Gene (Department of Oral Biochemistry, School of Dentistry, Chosun University) ;
  • Jin, Dongchun (Department of Veterinary Medicine, College of Agriculture, Yanbian University) ;
  • Kim, Saeng-Gon (Department of Human Biology, School of Dentistry, Chosun University) ;
  • Kook, Joong-Ki (Department of Oral Biochemistry, School of Dentistry, Chosun University)
  • 박순낭 (조선대학교 치과대학 구강생화학교실) ;
  • 이동균 (조선대학교 치과보존학교실) ;
  • 임윤경 (조선대학교 치과대학 구강생화학교실) ;
  • 김화숙 (전남과학대학 치위생과) ;
  • 조유진 (조선대학교 치과대학 구강생화학교실) ;
  • 김동춘 (중국 연변대학교 농학원 동물의학교실) ;
  • 김생곤 (조선대학교 치과대학 인체생물학교실) ;
  • 국중기 (조선대학교 치과대학 구강생화학교실)
  • Received : 2012.02.13
  • Accepted : 2012.03.21
  • Published : 2012.03.31


The aim of this study was to evaluate the antimicrobial effect of carvacrol against periodontopathic and cariogenic bacteria and its cytotoxicity in human oral tissue cells. We tested their antibacterial properties against mutans streptococci and five major periodontopathic bacterial species involved in periodontal disease. The antimicrobial activity was evaluated by the minimal inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The cell viability of carvacrol on normal human gingival fibroblast (NHGF) cells was tested by metyl thiazolyl tetrazolium assay. The data showed that carvacrol had remarkable antimicrobial effect on tested bacteria with a MIC and MBC values ranged from 16 to $128{\mu}g/ml$ and from 32 to $128{\mu}g/ml$, respectively. In cell toxicity studies, carvacrol had significantly decreased cell viability when NHGF cells were treated at $128{\mu}g/ml$. These findings suggest that carvacrol has a strong antimicrobial activity against periodontopathic and cariogenic bacteria. However, in order to use it as a component of gargling solution or toothpaste, its concentration should be below $64{\mu}g/ml$ and other compounds having an antimicrobial activity against periodontopathic and cariogenic bacteria should be used together.


antimicrobial effect;carvacrol;mutans streptococci;periodontopathogens


Supported by : 보건복지가족부


  1. Aeschbach, R., Loliger, J., Scott, B.C., Murcia, A., Butler, J., Halliwell, B., and Aruoma, O.I. 1994. Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food Chem. Toxicol. 32, 31-36.
  2. Alam, K., Nagi, M.N., Badary, O.A., Al-Shabanah, O.A., Al-Rikabi, A.C., and Al-Bekairi, A.M. 1999. The protective action of thymol against carbon tetrachloride hepatotoxicity in mice. Pharmacol. Res. 40, 159-163.
  3. Assev, S., Stig, S., and Scheie, A.A. 2002. Cariogenic traits in xylitol-resistant and xylitol-sensitive mutans streptococci. Oral Microbiol. Immunol. 17, 95-99.
  4. Board of Trustees of the American Academy of Periodontology. 2000. Parameter on systemic conditions affected by periodontal disease. J. Periodontol. 71, 880-883.
  5. Botelho, M.A., Nogueira, N.A., Bastos, G.M., Fonseca, S.G., Lemos, T.L., Matos, F.J., Montenegro, D., Heukelbach, J., Rao, V.S., and Brito, G.A. 2007. Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens. Braz. J. Med. Biol. Res. 40, 349-356.
  6. Darveau, R.P., Tanner, A., and Page, R.C. 1997. The microbial challenge in periodontitis. Periodontol. 2000. 14, 12-32.
  7. Fine, D.H. 1988. Mouthrinses as adjuncts for plaque and gingivitis management. A status report for the American Journal of Dentistry. Am. J. Dent. 1, 259-263.
  8. Haffajee, A.D. and Socransky, S.S. 1994. Microbial etiological agents of destructive periodontal diseases. Periodontol. 2000. 5, 78-111.
  9. Hwang, J.K., Chung, J.Y., Baek, N.I., and Park, J.H. 2004. Isopanduratin A from Kaempferia pandurata as an active antibacterial agent against cariogenic Streptococcus mutans. Int. J. Antimicrob. Agents 23, 377-381.
  10. Kim, M.J., Kim, C.S., Kim, B.H., Ro, S.B., Lim, Y.K., Park, S.N., Cho, E., Ko, J.H., Kwon, S.S., Ko, Y.M., and et al. 2011. Antimicrobial effect of Korean propolis against the mutans streptococci isolated from Korean. J. Microbiol. 49, 161-164. Erratum in: J. Microbiol. 49, 327.
  11. Kubert, D., Rubin, M., Barnett, M.L., and Vincent, J.W. 1993. Antiseptic mouthrinse-induced microbial cell surface alterations. Am. J. Dent. 6, 277-279.
  12. Lambert, R.J., Skandamis, P.N., Coote, P.J., and Nychas, G.J. 2001. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 91, 453-462.
  13. Loesche, W.J. 1986. Role of Streptococcus mutans in human dental decay. Microbiol. Rev. 50, 353-380.
  14. Marsh, P.D. 1992. Microbiological aspects of the chemical control of plaque and gingivitis. J. Dent. Res. 71, 1431-1438.
  15. National Committee for Clinical Laboratory Standards. 2000. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved Standard M7-A5. NCCLS, Wayne, PA, USA.
  16. Petersen, P.E. 2003. The World Oral Health Report 2003: continuous improvement of oral health in the 21st century-the approach of the WHO Global Oral Health Programme. Community Dent. Oral Epidemiol. 31, 3-24.
  17. Petersen, P.E. 2004. Challenges to improvement of oral health in the 21st century the approach of the WHO Global Oral Health Programme. Int. Dent. J. 54, 329-343.
  18. Qiu, J., Zhang, X., Luo, M., Li, H., Dong, J., Wang, J., Leng, B., Wang, X., Feng, H., Ren, W., and Deng, X. 2011. Subinhibitory concentrations of perilla oil affect the expression of secreted virulence factor genes in Staphylococcus aureus. PLoS One 6, e16160.
  19. Robledo, S., Osorio, E., Munoz, D., Jaramillo, L.M., Restrepo, A., Arango, G., and Velez, I. 2005. In vitro and in vivo cytotoxicities and antileishmanial activities of thymol and hemisynthetic derivatives. Antimicrob. Agents Chemother. 49, 1652-1655.
  20. Skold, K., Twetman, S., Hallgren, A., Yucel-Lindberg, T., and Modeer, T. 1998. Effect of a chlorhexidine/thymol-containing varnish on prostaglandin E2 levels in gingival crevicular fluid. Eur. J. Oral Sci. 106, 571-575.
  21. Solorzano-Santos, F. and Miranda-Novales, M.G. 2011. Essential oils from aromatic herbs as antimicrobial agents. Curr. Opin. Biotechnol. doi:10.1016/j.copbio.2011.08.005.
  22. Sousa, E.O., Silva, N.F., Rodrigues, F.F., Campos, A.R., Lima, S.G., and Costa, J.G. 2010. Chemical composition and resistance-modifying effect of the essential oil of Lantana camara. Linn. Pharmacogn. Mag. 6, 79-82.
  23. Spencer, A.J. and Do, L.G. 2008. Changing risk factors for fluorosis among South Australian children. Community Dent. Oral Epidemiol. 36, 210-218.
  24. Tredwin, C., Scully, C., and Bagan-Sebastian, J. 2005. Drug-induced disorders of teeth. J. Dent. Res. 84, 596-602.
  25. Weber, F.J. and de Bont, J.A. 1996. Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim. Biophys. Acta. 1286, 225-245.
  26. Zeytinoglu, H., Incesu, Z., and Baser, K.H. 2003. Inhibition of DNA synthesis by carvacrol in mouse myoblast cells bearing a human N-RAS oncogene. Phytomedicine 10, 292-299.

Cited by

  1. Antimicrobial Effects of Ethanol Extract of Yongdamgosam-hwan against Streptococcus mutans vol.30, pp.6, 2015,