DOI QR코드

DOI QR Code

A POSTERIORI ERROR ESTIMATOR FOR LINEAR ELASTICITY BASED ON NONSYMMETRIC STRESS TENSOR APPROXIMATION

  • Received : 2011.07.07
  • Accepted : 2011.12.23
  • Published : 2012.03.25

Abstract

In this paper we present an a posteriori error estimator for the stabilized P1 nonconforming finite element method of the linear elasticity problem based on a nonsymmetric H(div)-conforming approximation of the stress tensor in the first-order Raviart-Thomas space. By combining the equilibrated residual method and the hypercircle method, it is shown that the error estimator gives a fully computable upper bound on the actual error. Numerical results are provided to confirm the theory and illustrate the effectiveness of our error estimator.

Acknowledgement

Supported by : Korea Science and Engineering Foundation (KOSEF)

References

  1. R. Verfurth, A review of a posteriori error estimation techniques for elasticity problems, Comput. Methods Appl. Mech. Engrg., 176 (1999), 419-440. https://doi.org/10.1016/S0045-7825(98)00347-8
  2. S. Nicaise, K. Witowski and B.I. Wohlmuth, An a posteriori error estimator for the Lame equation based on equilibrated fluxes, IMA J. Numer. Anal., 28 (2008), 331-353.
  3. M. Ainsworth and R. Rankin, Guaranteed computable error bounds for conforming and nonconforming finite element analyses in planar elasticity, Internat. J. Numer. Methods Engrg., 82 (2010), 1114-1157. https://doi.org/10.1002/nme.2799
  4. H.-C. Lee and K.-Y. Kim, A posteriori error estimators for stabilized P1 nonconforming approximation of the Stokes problem, Comput. Methods Appl. Mech. Engrg., 199 (2010), 2903-2912. https://doi.org/10.1016/j.cma.2010.06.002
  5. P. Hansbo and M.G. Larson, Discontinuous Galerkin and the Crouzeix-Raviart element: application to elasticity, M2AN Math. Model. Numer. Anal., 37 (2003), 63-72. https://doi.org/10.1051/m2an:2003020
  6. C.O. Horgan and L.E. Payne, On inequalities of Korn, Friedrichs and Babuska-Aziz, Arch. Rational Mech. Anal., 82 (1983), 165-179.
  7. C.O. Horgan, Korn's inequalities and their applications in continuum mechanics, SIAM Rev., 37 (1995), 491-511. https://doi.org/10.1137/1037123
  8. K.-Y. Kim, Guaranteed a posteriori error estimator for mixed finite element methods of linear elasticity with weak stress symmetry, submitted for publication.
  9. M. Bebendorf, A note on the Poincare inequality for convex domains, Z. Anal. Anwendungen, 22 (2003), 751-756.
  10. M. Ainsworth and J.T. Oden, A posteriori error estimation in finite element analysis, John Wiley and Sons, New York, 2000.
  11. S. Ohnimus, E. Stein and E. Walhorn, Local error estimates of FEM for displacements and stresses in linear elasticity by solving local Neumann problems, Internat. J. Numer. Methods Engrg., 52 (2001), 727-746. https://doi.org/10.1002/nme.228
  12. K.-Y. Kim, Flux reconstruction for the P2 nonconforming finite element method with application to a posteriori error estimation, submitted for publication.