DOI QR코드

DOI QR Code

Effect of Gender-Specific Adult Bovine Serum on Gene Expression During Myogenesis

  • Lee, Eun-Ju (School of Biotechnology, Yeungnam University) ;
  • Pokharel, Smritee (Department of Biotechnology, Yeungnam University) ;
  • Kim, Jie-Hoe (School of Biotechnology, Yeungnam University) ;
  • Nam, Sang-Sup (College of Veterinary Medicine, Konkuk University) ;
  • Choi, In-Ho (School of Biotechnology, Yeungnam University)
  • Received : 2012.06.08
  • Accepted : 2012.06.19
  • Published : 2012.06.30

Abstract

Gender specificity in muscle growth and development is well known. Genesis of muscle is dependent on proliferation and differentiation potential of resident myogenic satellite cells (MSCs) present in muscle fibers. Multipotential capacity of forming myocyte, osteocyte, and adipocyte like cell makes MSCs a unique stem cell. To understand the molecular mechanism involved in determination of muscle quality due to difference in hormone concentration of different gender of animals, MSCs were isolated from bovine skeletal muscle and cultured in male, female, and castrated serum supplemented media. DNA microarray used consisted of 24,000 spots with 70 mer oligo in each spot. A total of 88 genes were up-regulated and 551 genes were down-regulated by more than two fold. Among up-regulated gene, 33, 34, and 21 genes were found up-regulated in cells grown in male, female, and castrated serum, respectively. Interestingly, male serum showed 4, female 11 and castrated male showed 4 genes expressed highly in each gender. Further study on the highly up-regulated gene may unfold the mystery of gender specificity found in muscle development. Also, the identification of differentially expressed genes in gender-specific serum will add information on infrastructure of bovine genome research.

Keywords

Serum;Sex Steroid;Myogenesis;Muscle

Acknowledgement

Supported by : Rural Development Administration

References

  1. Buckingham, M., Bajard, L., Chang, T., Daubas, P., Hadchouel, J., Meilhac, S., Montarras, D., Hadchouel, J., Meilhac, S. and Montarras, D. 2003. The formation of skeletal muscle: from somite to limb. J. Anat. 202:59-68. https://doi.org/10.1046/j.1469-7580.2003.00139.x
  2. Bakkar, N. and Guttridge, D. C. 2010. NF-kB Signaling: A Tale of Two Pathways in Skeletal Myogenesis. Physiol. Rev. 90: 495-511. https://doi.org/10.1152/physrev.00040.2009
  3. Barth, A. D., Brito, L. F. and Kastelic, J. P. 2008. The effect of nutrition on sexual development of bulls. Theriogenology. 70: 485-494. https://doi.org/10.1016/j.theriogenology.2008.05.031
  4. Braun, T., Buschhausen-Denker, G., Bober, E., Tannich, E. and Arnold, H. H. 1989. A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. EMBO J. 8:701-709.
  5. Choi, Y. C., Morris, G. M., Lee, F. S. and Sokoloff, L. 1980. The Effect of Serum on Monolayer Cell Culture of Mammalian Articular Chondrocytes. Connective tissue research. 7:105-112. https://doi.org/10.3109/03008208009152295
  6. Dobson, H. and Dean, P. D. 1974. Radioimmunoassay of oestrone oestradiol-17a and-17b in bovine plasma during the oestrous cycle and last stages of pregnancy. J. Endocrinol. 61:479-486. https://doi.org/10.1677/joe.0.0610479
  7. Essien, A. I. and Fetuga, B. L. 1988. Muscle growth and development in the indigenous Nigerian pigs as influenced by age, sex and body weight. The Journalof Agricultural Science. 110:619-625. https://doi.org/10.1017/S0021859600082216
  8. Haba, G. D., Cooper, G. W. and Elting, V. 1968. Myogenesis of striated muscle in vitro: Hormone and serum requirements for the development of glycogen synthetase in myotubes. Journal of Cellular Physiology. 72:21-27. https://doi.org/10.1002/jcp.1040720105
  9. Halevy, O., Piestun, Y., Allouh M. Z., Rosser, B. W. C.,Rinkevich, Y., Ram Reshef, R., Rozenboim, I., Wleklinski-Lee M. and Yablonka-Reuven, Z. 2004. Pattern of Pax7 Expression During Myogenesis in the Post hatch Chicken Establishes a Model for Satellite Cell Differentiation and Renewal. Developmental Dynamics. 231:489-502. https://doi.org/10.1002/dvdy.20151
  10. Hawke, T. J. and Garry, D. J. 2001. Myogenic satellite cells: physiology to molecular biology. J. Appl. Physiol. 91: 534-551. https://doi.org/10.1152/jappl.2001.91.2.534
  11. Hayashi, S., Aso, H., Watanabe, K., Nara, H., Rose, M. T., Ohwada, S. and Yamaguchi, T. 2000. Sequence of IGF-I, IGF-II, and HGF expression in regenerating skeletal muscle. Histochemistry and Cell Biology. 122:427-434. https://doi.org/10.1007/s00418-004-0704-y
  12. Hughes, S. M., Taylor, J. M., Tapscott, S. J., Gurley, C. M., Carter, W. J. and Peterson, C. A. Selective accumulation of MyoD and myogenin mRNAs in fast and slow adult skeletal muscle is controlled by innervation and hormones. Development. 118:1137-1147.
  13. Kim, J., Kim, M., Nahm, S. S., Lee, D. M., Pokharel, S. and Choi, I. 2011. Characterization of Gender-Specific Bovine Serum. Animal Cells and Systems. 15:147-154. https://doi.org/10.1080/19768354.2011.577584
  14. Kaufmann, U., Joachim, Kirsch, J., Irintchev, A., Wernig, A. and Starzinski-Powitz1, A. 1999. The M-cadherin catenin complex interacts with microtubules in skeletal muscle cells: implications for the fusion of myoblasts. Journal of Cell Science. 112:55-67.
  15. Lee, D. M., Bajracharya, P., Lee, E. J., Kim, J. E., Lee, H. J., Chun, T., Kim, J., Cho, K. H., Chang, J. S., Hong, S. K. and Choi, I. 2011. Effects of Gender-Specific Adult Bovine Serum on Myogenic Satellite Cell Proliferation, Differentiation and Lipid Accumulation. In Vitro Cell Develop Biol-Animal. 47:438-44. https://doi.org/10.1007/s11626-011-9427-2
  16. Lee, D. M., Choi, M. S., Woo, G. I., Shin, Y. M., Lee, K. H., Cheon, Y., Chun, T. and Choi, I. 2009. Effect of Genderspecific Bovine Serum Supplemented Medium on Cell Culture. J. Anim. Sci. and Tech. 51:413-420. https://doi.org/10.5187/JAST.2009.51.5.413
  17. Lee, E. J., Bajracharya, P., Lee, D. M., Kang, S. W., Lee, Y. S., Lee, H. J, Hong, S. K., Chang, J., Kim, J. W., Schnabel, R. D., Taylor, J. F. and Choi, I. 2011. Gene Expression Profiles During Differentiation and Transdifferentiation of Bovine Myogenic Satellite Cells. Genes & Genomics. 34:133-148.
  18. Lee, E. J., Choi, J., Hyun, J. H., Cho, K. H., Hwang, I. H., Lee, H. J., Chang, J. S. and Choi, I. 2007. Steroid effects on cell proliferation, differentiation and steroid receptor gene expression in adult bovine muscle satellite cells. Asian-Aust J. Anim. Sci. 20:501-510. https://doi.org/10.5713/ajas.2007.501
  19. Maurer, H. 1986. Towards chemically-defined, serum-free media for mammalian cellculture. In R. Freshney (Eds.), Animal cell culture: A Practical approach. IRL Press, Oxford. Pp.
  20. Miller, A. E. J., MacDougall, J. D, Tarnopolsky, M. A, and Sale, D. G. 1993. Gender differences in strength and muscle fiber characteristics. European Journal of Applied Physiology and Occupational Physiology. 66:254-262. https://doi.org/10.1007/BF00235103
  21. Moran, J. L., Li, Y., Hill, A. A., Mounts, W. M. and Miller, C. P. 2002. Gene expression changes during mouse skeletal myoblast differentiation revealed by transcriptional profiling. Physiol. Genomics. 10:103-111. https://doi.org/10.1152/physiolgenomics.00011.2002
  22. Olson, E. N. and Williams, R. S. 2000. Remodeling muscles with calcineurin. Bioessays. 22:510-9. https://doi.org/10.1002/(SICI)1521-1878(200006)22:6<510::AID-BIES4>3.0.CO;2-1
  23. Pavlath, G. K. 2010. Spatial and functional restriction of regulatory molecules during mammalian myoblast fusion. Experimental Cell Research. 316:3067-3072. https://doi.org/10.1016/j.yexcr.2010.05.025
  24. Ronning, O. W., Lindmo, T., Pettersen, E. O. and Seglen, P. O. 1981. Effect of serum step-down on protein metabolism and proliferation kinetics of NHIK 3025 cells. Journal of Cellular Physiology. 107:47-57. https://doi.org/10.1002/jcp.1041070107
  25. Shen, X., Collier, J. M., Hlaing, M., Zhang, L., Delshad, E. H., Bristow, J. and Bernstein, H. S. 2003. Genome-wide examination of myoblast cell cycle withdrawal during differentiation. Dev. Dyn. 226:128-138. https://doi.org/10.1002/dvdy.10200
  26. Shibayama, K., Nagasawa, M., Takafumi Ando, Minami, M., Wachino, J., Suzuki, S. and Arakawa, Y. 2006. Usefulness of Adult Bovine Serum for Helicobacter pylori Culture Media. J Clin Microbiol. 44:4255-4257. https://doi.org/10.1128/JCM.00477-06
  27. Shimada, Y., Fischman, D. A. and Moscona, A. A. 1967. The fine structure of embryonic chick skeletal muscle cells differentiated in vitro. J. C. B. 35:445-453.
  28. Sterrenburg, E., Turk, R., 't Hoen, P. A. C., van Deutekom, J. C. T., Boer, J. M., van Ommen, G. J. and den Dunnen, J. T. 2004. Large-scale gene expression analysis of human skeletal myoblast differentiation. Neuromuscul. Disord. 14:507-518. https://doi.org/10.1016/j.nmd.2004.03.008
  29. Strouken, P. M. H., Oberink, J. W. and Bantjes, A. 1994. Culturing of BHK-21 cells in a medium containing adult bovine serum and pituitary extract-Comparison with other sera and purified growth factors. Methods in Cell Science. 16: 17-27.
  30. Sadkowski, T., Jank, M., Zwierzchowski, L., Oprzadek, J. and Motyl, T. 2009. Transcriptomic index of skeletal muscle of beef breeds bulls.Journal Of Physiology And Pharmacology. 60 :15-28.
  31. Vicente, A. and Kenneth, W. 1996. Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis. The Journal of Cell Biology. 132:657-66. https://doi.org/10.1083/jcb.132.4.657
  32. Wright, W. E., Sassoon, D. A. and Lin, V. K. 1989. Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell. 56:607-17. https://doi.org/10.1016/0092-8674(89)90583-7
  33. Wust, R. C., Morse, C. I., Haan, A., Jones, D. A. and Degens, H. 2007. Sex differences in contractile properties and fatigue resistance of human skeletal muscle. Exp Physiol 93:843-850.
  34. Yaffe, D. and Saxel, O. 1997. A Myogenic Cell Line with Altered Serum Requirements for Differentiation. Differentiation. 7: 159-166.
  35. Yoshioka, M., Boivin, A., Bolduc,. C. and St-Amand, J. 2007. Gender difference of androgen actions on skeletal muscle transcriptome. J Mol Endocrinol. 39:119-133. https://doi.org/10.1677/JME-07-0027