DOI QR코드

DOI QR Code

Characteristics Analysis of MCM41 Impregnated with Ethylenediamine for CO2 Adsorption

CO2 흡착을 위한 Ethylenediamine 함침 MCM41의 특성 분석

  • Lee, Chul-Kyu (Department of Environmental Science and Engineering, Keimyung University) ;
  • Choi, Sung-Woo (Department of Environmental Science and Engineering, Keimyung University)
  • Received : 2012.02.20
  • Accepted : 2012.05.11
  • Published : 2012.06.30

Abstract

Adsorption experiment of carbon dioxide was performed on MCM41 silica with a 30 wt.% EDA(ethylenediamine) loading at different $CO_2$ inlet concentration and various adsorption temperature. The surface characteristics of $CO_2$ capturing agent were carried out using BET analysis, X-ray diffraction and FT-IR. The results of BET showed 781 $m^2/g$ for MCM41 and 464 $m^2/g$ for EDA/MCM41. X-ray diffraction results reveled typical hexagonal pore system. The higher sorption capacity of EDA/MCM41 was about 80 $mg_{CO2}/g_{sorbent}$ with 50% $CO_2$ inlet concentration and 303 K adsorption temperature. The isosteric heat of adsorption in 303-353 K ranged from -25.47 to -28.24 KJ/mole for EDA/MCM41, which indicates $CO_2$-EDA/MCM41 interaction with exothermic adsorption process. Finally, the performance of EDA/MCM41 in 10 consecutive sorption-desorption runs was a stable with only a minor drop in its sorption capacity.

References

  1. 박예원, 백일현, 박상도, 이재욱, 박소진, 2007, MEA (monoethanolamine)함침 메조포러스 물질을 이용한 $CO_2$ 회수, 화학공학, 45(6), 573-581.
  2. 이동환, 김상규, 이송우, 이민규, 2010, 함침농도와 $CO_2$ 가스 유입농도에 따른 활성탄의 흡착특성, 한국환경과학회지, 9(2), 1403-1407.
  3. 최성우, 2011, 아민계 함침 메조포러스 실리카를 이용한 $CO_2$ 흡착, 한국환경과학회지, 20(7), 873-879.
  4. Agnihotri, S., Rood, M. J., Rostam-Abadi, M., 2005, Adsorption equilibrium of organic vapors on single-walled carbon nanotubes, Carbon, 43, 2379-2388. https://doi.org/10.1016/j.carbon.2005.04.020
  5. Ambrogi, V., Famiani, F., Perioli, L., Marmottini, F., Di Cunzolo, I., Rossi, C., 2006, Effect of MCM-41 on the dissolution rate of the poorly soluble plant growth regulator, the indole-3-butyric acid, Micro. Meso. Mater., 96, 177-183. https://doi.org/10.1016/j.micromeso.2006.06.033
  6. Chang, A. C. C., Chuang, S. S. C., Gray, M., Soong, Y., 2003, In-situ infrared study of $CO_2$ adsorption on SBA-15 grafted with $\gamma$-(aminopropyl)triethoxysilane, Energy Fuels, 17(2), 468-473. https://doi.org/10.1021/ef020176h
  7. Chang, F. Y., Chao, K. J., Cheng, H. Hs., Tan, C. S., 2009, Adsorption of $CO_2$ onto amine-grafted mesoporous silica, Sep. Pur. Technol., 70(1), 87-95. https://doi.org/10.1016/j.seppur.2009.08.016
  8. Chen, G., Wang, L., Zhang, J., Chen, F., Anpo, M., 2009, Photophysical properties of a naphthalimide derivative encapsulated within Si-MCM-41, Ce-MCM-41 and Al-MCM-41, Dyes Pigments, 81(2), 119-123. https://doi.org/10.1016/j.dyepig.2008.09.013
  9. Huang, H. Y., Yang, R. T., 2003, Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas, Ind. Eng. Chem. Res., 42(12), 2427-2433. https://doi.org/10.1021/ie020440u
  10. Lu, C., Su, F., Hsu, S. C., Chen, W., Bai, H., Hwang, J. F., Lee, H. H., 2009, Thermodynamics and regeneration of $CO_2$ adsorption on mesoporous spherical-silica particles, Fuel Process Technol., 90(12), 1543-1549. https://doi.org/10.1016/j.fuproc.2009.08.002
  11. Ross, S., Olivier, J. P., 1964, On physical adsorption, Inter-science, New York.
  12. Son, W. J., Choi, J. S., Ahn, W, S., 2008, Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials, Micro. Meso. Mater., 113, 31-40. https://doi.org/10.1016/j.micromeso.2007.10.049
  13. Szekely, J., Evans, J. W., Sohn, H. Y., 1976, Gas-Solid Reaction, Academic Press, New York.
  14. Veawab, A., Tontiwachwuthikul, P., Chakma, A., 1999, Corrosion of carbon steel in the $CO_2$ absorption process using aqueous amine solution, Ind. eng. Chem. Res., 38(10), 3917-3924. https://doi.org/10.1021/ie9901630
  15. Xu, X., Song, C., Andresen, J. M., Miller, B. G., Scaroni, A. W., 2003, Preparation and characterization of novel $CO_2$ molecular basket adsorbents based on polymer-modified mesoporous molecular sieve MCM-41, Micropor. Mesopo. Mat., 62, 29-45. https://doi.org/10.1016/S1387-1811(03)00388-3
  16. Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, R.B., Bland, A.E., Wright, I., 2008, Progress in carbon dioxide separation and capture: a review, J. Environ. Sci., 20, 14-27. https://doi.org/10.1016/S1001-0742(08)60002-9
  17. Zakkour, P., Haines, M., 2007, Permitting issues for $CO_2$ capture, transport and geological storage: a review of Europe, USA, Canada and Australia, Int. J. GreenH. Gas Con., 1, 97-100.