DOI QR코드

DOI QR Code

Application of Disinfection Models on the Plasma Process

플라즈마 공정에 대한 소독 모델 적용

  • Back, Sang-Eun (Department of Environmental Science, Catholic University of Daegu) ;
  • Kim, Dong-Seog (Department of Environmental Science, Catholic University of Daegu) ;
  • Park, Young-Seek (Faculty of Liberal Education, Daegu University)
  • 백상은 (대구가톨릭대학교 환경과학과) ;
  • 김동석 (대구가톨릭대학교 환경과학과) ;
  • 박영식 (대구대학교 기초교육원)
  • Received : 2012.02.15
  • Accepted : 2012.05.14
  • Published : 2012.06.30

Abstract

The application of disinfection models on the plasma process was investigated. Nine empirical models were used to find an optimum model. The variation of parameters in model according to the operating conditions (first voltage, second voltage, air flow rate, pH) were investigated in order to explain the disinfection model. In this experiment, the DBD (dielectric barrier discharge) plasma reactor was used to inactivate Ralstonia Solanacearum which cause wilt in tomato plantation. Optimum disinfection models were chosen among the nine models by the application of statistical SSE (sum of squared error), RMSE (root mean sum of squared error), $r^2$ values on the experimental data using the GInaFiT software in Microsoft Excel. The optimum model was shown as Weibull+talil model followed by Log-linear+ Shoulder+Tail model. Two models were applied to the experimental data according to the variation of the operating conditions. In Weibull+talil model, Log10($N_o$), Log10($N_{res}$), ${\delta}$ and p values were examined. And in Log-linear+Shoulder+Tail model, the Log10($N_o$), Log10($N_{res}$), $k_{max}$, Sl values were calculated and examined.

Keywords

Disinfection model;Plasma process;Ralstonia Solanacearum;First voltage;Second voltage;Air flow rate;pH

Acknowledgement

Supported by : 한국연구재단

References

  1. 김동석, 박영식, 2011, 수처리용 유전체장벽 플라즈마 반응기에 대한 기초 연구, 한국환경과학회지, 20(5), 623-630.
  2. 김창원, 김성기, 윤태일, 유충호, 2004, 환경미생물학, 동화기술, 103-114.
  3. 박영식, 김동석, 2011, 전기분해공정을 이용한 E. coli 소독에 미치는 인공하수 수질의 영향, 한국환경과학회지, 20(9), 1115-1124.
  4. 정연정, 2006, 오존과 UV를 이용한 복합 (sequential or combined) 소독 공정의 소독 효율 평가: 지표 미생물의 불활성화 연구, 석사학위 논문, 연세대학교.
  5. 조민, 윤제용, 2005, 미생물의 불활성화와 소독모델, 첨단환경기술, 6, 108-115.
  6. Albert, I., Marfart, P., 2005, A modified Weibull model for bacterial inactivation, International Journal of Food Microbiology, 100, 197-211. https://doi.org/10.1016/j.ijfoodmicro.2004.10.016
  7. Baranyl, J., Roberts, T. A., 1994, A dynamic approach to predicting bacterial growth in foods, International Journal of Food Microbiology, 23, 277-294. https://doi.org/10.1016/0168-1605(94)90157-0
  8. Cerf, O., 1977, A review. Tailing of survival curves of bacterial spores, Journal of Applied Microbiology, 42, 1-19. https://doi.org/10.1111/j.1365-2672.1977.tb00665.x
  9. Cho, M., Chung, H. M., Yoon, J. Y., 2003, Quantative evaluation of the synergistic sequential inactivation of Bacillus subtilis spores with ozone followed by chlorine, Environ. Sci. Technol., 37, 2134-2138. https://doi.org/10.1021/es026135h
  10. Facile, N., Barbeau, B., Prevost, M., Koudjonou, B., 2000, Evaluating bacterial aerobic spores as a surrogate for Giardia and Cryptosporidium inactivation by ozone, Wat. Res., 34(12), 3238-3246. https://doi.org/10.1016/S0043-1354(00)00086-5
  11. Geeraerd, A. H., Herremans, C. H., Van Impe, J. F., 2000, Structural model requirement to describe microbial inactivation during a mild heat treatment, International Journal of Food Microbiology, 59, 185-209. https://doi.org/10.1016/S0168-1605(00)00362-7
  12. Geeraerd, A. H., Valdramidis, V. P., Van Impe, 2005, GInaFiT, a freeware tool assess non-log-linear microbial survivor curves, International Journal of Food Microbiology, 102, 95-105. https://doi.org/10.1016/j.ijfoodmicro.2004.11.038
  13. Larson, A., Marinas, B. J., 2003, Inactivation of Bacillus subtilis spores with ozone and monochloramine, Wat. Res., 37(4), 833-844. https://doi.org/10.1016/S0043-1354(02)00381-0
  14. Lee, J. S., Choi, J. H., Seo, S. T., Han, K. S., Park, J. H., Jang, H. I., 2005, Control of tamato wilt disease by amending pH of nutrient solution in hydroponic system, Res. Plant Dis., 11(2), 193-197. https://doi.org/10.5423/RPD.2005.11.2.193
  15. Mafart, P., Couvert, O., Gailard, S., Leguerinel, I., 2002, On calculating sterility in thermal preservation methods: application of the Weibull frequency distribution model, International Journal of Food Microbiology, 72, 107-113. https://doi.org/10.1016/S0168-1605(01)00624-9
  16. McMeekin, T. A., Olley, J. N., Ross, T., Ratkowsky, D. A., 1993, Predictive microbiology: theory and spplication, Research Studies Press Ltd., John Wiley & Sons, New York.
  17. Rosso, L., Lobry, J. R., Bajard, S., Flandrois, J. P., 1995, Convenient model to describe the combined effects of temperature and pH on microbial growth, Applied and Environmental Microbiology, 61, 610-616.
  18. Van Boekkel, M. A. J. S., 2002, On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells, International Journal of Food Microbiology, 74, 139-159. https://doi.org/10.1016/S0168-1605(01)00742-5
  19. Van Impe, J. F., Nicolai, B. M., Schellekens, M., Martens, T., De Baerdemaeker, J., 1995, Predictive microbiology in a dynamic environment: A system theory approach, International Journal of Food Microbiology, 25, 227-249. https://doi.org/10.1016/0168-1605(94)00140-2

Cited by

  1. E. coli Disinfection Using a Multi Plasma Reactor vol.39, pp.2, 2013, https://doi.org/10.5668/JEHS.2013.39.2.187