COD Removal of Rhodamine B from Aqueous Solution by Electrochemical Treatment

  • Received : 2012.01.13
  • Accepted : 2012.05.14
  • Published : 2012.06.30


This study elucidates the COD removal of dye (Rhodamine B) through electrochemical reaction. Effects of current density (7.2 to 43.3 $mA/cm^2$), electrolyte type (NaCl, KCl, $Na_2SO_4$, HCl), electrolyte concentration (0.5 to 2.0 g/L), air flow rate (0 to 4 L/min) and pH (3 to 11) on the COD removal of Rhodamine B were investigated. The observed results showed that the increase of pH decrease the COD removal efficiency. Whereas, the increase of current density;NaCl concentration and air flow rate caused the increase of the COD removal of Rhodamine B.


Supported by : Catholic University of Daegu


  1. APH-AWWA-WPCE, 1992, Standard methods for the examination of water and wastewater, 18th ed., APHA, Washington D. C.
  2. Chen, X., Chen, G., Yue, P. L., 2003, Anodic oxidation of dyes at novel Ti/B diamond electrodes, Chem. Eng. Sci., 58, 995-1001.
  3. Cheng, W. S., Liang, J. S., 2009, Electrochemical destruction of dinitrotoluene isomers and 2,4,6-trinitrotoluene in spent acid from toluene nitration process, J. Hazard. Mater., 161, 1017-1023.
  4. Fernandes, A., Morao, A., Magrinho, M., Goncalves, I., 2004, Electrochemical degradation of C.I. Acid Orange 7, Dyes Pigm., 61, 287-296.
  5. Kim, D. S., Park, Y. S., 2009, Characteristics of oxidants production and dye degradation with operation parameters of electrochemical process, J. Env. Sci., 18(11), 1235-1245.
  6. Li, M., Feng, C., Hu, W., Zhang, Z., Sugiura, N., 2009, Electrochemical degradation of phenol using electrodes of $Ti/RuO_2-Pt\;and\;Ti/IrO_2-Pt$, J. Hazard. Mater., 162, 455-462.
  7. Li, X. Y., Cui, Y. H., Feng, Y. J., Xie, Z. M., Gu, J. D., 2005, Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes, Wat. Res., 39, 1972-1981.
  8. Lin, S. H., Feng, C. F., 1994, Treatment of textile wastewater by electrochemical method, Wat. Res., 28(2), 277-282.
  9. Osutveren, U. B., Koparal, S., 1994, Color removal from textile effluents by electrochemical destruction, J. Environ. Sci. Health, Environ. Sci. Eng., A29(1), 1-16.
  10. Prasad, R. K., Srivastava, S. N., 2009, Electrochemical degradation of distillery spent wash using catalytic anode: Factorial design of experiments, Chem. Eng. J., 146, 22-29.
  11. Rajeshwar, K., Ibanez, J. G., 1997, Environmental Electrochemistry. Fundamentals and application in pollution abatement, Academic press, San Diego, CA, 361-370.
  12. Rivera, M. C., Jimenez, M. M. D., Gonzalez, M. P. E., 2004, Degradation of the textile dyes Basic yellow 28 and Reactive black 5 using diamond and metal alloys electrodes, Chemosphere 55, 1-10.
  13. Robert, L., Chiu, H. M., Shiau, Sh. Ch., Yeh, R. Y. L., Hung, Y. T., 2007, Degradation and sludge production of textile dyes by Fenton and photo-Fenton processes, Dyes Pigm., 73, 1-6.
  14. Sanroman, M. A., Pazos, M., Ricart, M. T., Cameselle, C., 2004, Electrochemical decolourisation of structurally different dyes, Chemosphere, 57, 233-239.
  15. Szpyrkowicz, L., Juzzolino, C., Kaul, S. N., Daniele, S., De Faveri, M. D., 2000, Electrochemical oxidation of dyeing baths bearing disperse dyes, Ind. Eng. Che. Res., 39, 3241-3248.