EST-SSR Marker Sets for Practical Authentication of All Nine Registered Ginseng Cultivars in Korea

Kim, Nam-Hoon;Choi, Hong-Il;Ahn, In-Ok;Yang, Tae-Jin

  • Received : 2012.01.19
  • Accepted : 2012.04.04
  • Published : 2012.07.15


Panax ginseng has been cultivated for centuries, and nine commercial cultivars have been registered in Korea. However, these nine elite cultivars are grown in less than 10% of ginseng fields, and there is no clear authentication system for each cultivar even though their values are higher than those of local landraces. Here, we have developed 19 microsatellite markers using expressed gene sequences and established an authentication system for all nine cultivars. Five cultivars, 'Chunpoong', 'Sunpoong', 'Gumpoong', 'Sunun', and 'Sunone', can each be identified by one cultivar-unique allele, gm47n-a, gm47n-c, gm104-a, gm184-a (or gm129-a), and gm175-c, respectively. 'Yunpoong' can be identified by the co-appearance of gm47n-b and gm129-c. 'Sunhyang' can be distinguished from the other eight cultivars by the co-appearance of gm47n-b, gm129-b, and gm175-a. The two other cultivars, 'Gopoong' and 'Cheongsun', can be identified by their specific combinations of five marker alleles. This marker set was successfully utilized to identify the cultivars among 70 ginseng individuals and to select true F1 hybrid plants between two cultivars. We further analyzed the homogeneity of each cultivar and phylogenetic relationships among cultivars using these markers. This marker system will be useful to the seed industry and for breeding of ginseng.


Panax ginseng;Seed industry;Breeding;EST-SSR markers;Cultivar authentication


  1. Nam KY. Clinical applications and efficacy of Korean ginseng. J Ginseng Res 2002;26:111-131.
  2. Choi KT. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol Sin 2008;29:1109-1118.
  3. Lee SS, Lee JH, Ahn IO. Characteristics of new cultivars in Panax ginseng C.A. Meyer. In: Korean Society of Ginseng. Proceeding of Ginseng Society Conference; 2005 Nov. Seoul: Korean Society of Ginseng, 2005. p.3-18.
  4. Ahn IO, Lee SS, Lee JH, Lee MJ, Jo BG. Comparison of ginsenoside contents and pattern similarity between root parts of new cultivars in Panax ginseng C.A. Meyer. J Ginseng Res 2008;32:15-18.
  5. Kwon WS, Lee MG, Lee JH. Characteristics of flowering and fruiting in new varieties and lines of Panax ginseng C.A. Meyer. J Ginseng Res 2001;25:41-44.
  6. Collard BC, Mackill DJ. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 2008;363:557-572.
  7. Mohan M, Nair S, Bhagwat A, Krishna TG, Yano M, Bhatia CR, Sasaki T. Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol Breed 1997;3:87-103.
  8. Artiukova EV, Kozyrenko MM, Reunova GD, Muzarok TI, Zhuravlev IuN. Analysis of genomic variability of planted Panax ginseng by RAPD. Mol Biol (Mosk) 2000;34:339-344.
  9. Um JY, Chung HS, Kim MS, Na HJ, Kwon HJ, Kim JJ, Lee KM, Lee SJ, Lim JP, Do KR et al. Molecular authentication of Panax ginseng species by RAPD analysis and PCR-RFLP. Biol Pharm Bull 2001;24:872-875.
  10. Ma KH, Dixit A, Kim YC, Lee DY, Kim TS, Cho EG, Park YJ. Development and characterization of new microsatellite markers for ginseng (Panax ginseng C. A. Meyer). Conserv Genet 2007;8:1507-1509.
  11. Kim J, Jo BH, Lee KL, Yoon ES, Ryu GH, Chung KW. Identification of new microsatellite markers in Panax ginseng. Mol Cells 2007;24:60-68.
  12. Bang KH, Lee JW, Kim YC, Jo IH, Seo AY, Lee JH, Kim OT, Hyun DY, Cha SW, Cho JH. Development of an ISSR-derived SCAR marker in Korean ginseng cultivars (Panax ginseng C. A. Meyer). J Ginseng Res 2011;35:52-59.
  13. Choi HI, Kim NH, Kim JH, Choi BS, Ahn IO, Lee JS, Yang TJ. Development of reproducible EST-derived SSR markers and assessment of genetic diversity in Panax ginseng cultivars and related species. J Ginseng Res 2011;35:399-412.
  14. Morgante M, Olivieri AM. PCR-amplified microsatellites as markers in plant genetics. Plant J 1993;3:175-182.
  15. Temnykh S, Park WD, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet 2000;100:697-712.
  16. Smith JS, Chin EC, Shu H, Smith OS, Wall SJ, Senior ML, Mitchell SE, Kresovich S, Ziegle J. An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L): comparisons with data from RFLPS and pedigree. Theor Appl Genet 1997;95:163-173.
  17. Rongwen J, Akkaya MS, Bhagwat AA, Lavi U, Cregan PB. The use of microsatellite DNA markers for soybean genotype identification. Theor Appl Genet 1995;90:43-48.
  18. Roder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW. A microsatellite map of wheat. Genetics 1998;149:2007-2023.
  19. Tang S, Yu JK, Slabaugh B, Shintani K, Knapp J. Simple sequence repeat map of the sunflower genome. Theor Appl Genet 2002;105:1124-1136.
  20. Wang Y, Georgi LL, Zhebentyayeva TN, Reighard GL, Scorza R, Abbott AG. High-throughput targeted SSR marker development in peach (Prunus persica). Genome 2002;45:319-328.
  21. Han ZG, Guo WZ, Song XL, Zhang TZ. Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Mol Genet Genomics 2004;272:308-327.
  22. Graham J, Smith K, MacKenzie K, Jorgenson L, Hackett C, Powell W. The construction of a genetic linkage map of red raspberry (Rubus idaeus subsp. idaeus) based on AFLPs, genomic-SSR and EST-SSR markers. Theor Appl Genet 2004;109:740-749.
  23. Chen C, Bowman K, Choi YA, Dang PM, Rao MN, Huang S, Soneji J, McCollum T, Gmitter F. EST-SSR genetic maps for Citrus sinensis and Poncirus trifoliata. Tree Genet Genomes 2008;4:1-10.
  24. Liu K, Muse SV. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 2005;21:2128-2129.
  25. Sneath PH, Sokal RR. Numerical taxonomy: the principles and practice of numerical classifi cation. San Francisco: W.H. Freeman, 1973.
  26. Guilford P, Prakash S, Zhu JM, Rikkerink E, Gardiner S, Bassett H, Forster R. Microsatellites in Malus X domestica (apple): abundance, polymorphism and cultivar identification. Theor Appl Genet 1997;94:249-254.
  27. Kashkush K, Jinggui F, Tomer E, Hillel J, Lavi U. Cultivar identifi cation and genetic map of mango (Mangifera indica). Euphytica 2001;122:129-136.
  28. Chowdhury MA, Vandenberg B, Warkentin T. Cultivar identification and genetic relationship among selected breeding lines and cultivars in chickpea (Cicer arietinum L.). Euphytica 2002;127:317-325.
  29. Aranzana MJ, Carbo J, Arus P. Microsatellite variability in peach [Prunus persica (L.) Batsch]: cultivar identifi cation, marker mutation, pedigree inferences and population structure. Theor Appl Genet 2003;106:1341-1352.
  30. Moisan-Thiery M, Marhadour S, Kerlan MC, Dessenne N, Perramant M, Gokelaere T, Le Hingrat Y. Potato cultivar identifi cation using simple sequence repeats markers (SSR). Potato Res 2005;48:191-200.
  31. Wang H, Sun H, Kwon WS, Jin H, Yang DC. A simplified method for identifying the Panax ginseng cultivar Gumpoong based on 26S rDNA. Planta Med 2010;76:399-401.
  32. Lee JW, Bang KH, Kim YC, Seo AY, Jo IH, Lee JH, Kim OT, Hyun DY, Cha SW, Cho JH. CAPS markers using mitochondrial consensus primers for molecular identifi cation of Panax species and Korean ginseng cultivars (Panax ginseng C. A. Meyer). Mol Biol Rep 2012;39:729-736.
  33. Kim OT, Bang KH, In DS, Lee JW, Kim YC, Shin YS, Hyun DY, Lee SS, Cha SW, Seong NS. Molecular authentication of ginseng cultivars by comparison of internal transcribed spacer and 5.8S rDNA sequences. Plant Biotechnol Rep 2007;1:163-167.
  34. Jo IH, Bang KH, Kim YC, Lee JW, Seo AY, Seong BJ, Kim HH, Kim DH, Cha SW, Cho YG et al. Rapid identification of ginseng cultivars (Panax ginseng Meyer) using novel SNP-based probes. J Ginseng Res 2011;35:504-513.
  35. Wang H, Sun H, Kwon WS, Jin H, Yang DC. Molecular identifi cation of the Korean ginseng cultivar "Chunpoong" using the mitochondrial nad7 intron 4 region. Mitochondrial DNA 2009;20:41-45.

Cited by

  1. Evolutionary relationship of Panax ginseng and P. quinquefolius inferred from sequencing and comparative analysis of expressed sequence tags vol.60, pp.4, 2013,
  2. C.A. Meyer) genome and evidence for allotetraploidy vol.77, pp.6, 2014,
  3. Comprehensive Survey of Genetic Diversity in Chloroplast Genomes and 45S nrDNAs within Panax ginseng Species vol.10, pp.6, 2015,
  4. Species Developed via Comparative Analysis of Complete Chloroplast Genome Sequences vol.65, pp.30, 2017,
  5. Integrated Transcriptomic and Metabolomic Analysis of Five Panax ginseng Cultivars Reveals the Dynamics of Ginsenoside Biosynthesis vol.8, pp.1664-462X, 2017,
  6. Development of EST Intron-Targeting SNP Markers for Panax ginseng and Their Application to Cultivar Authentication vol.17, pp.6, 2016,
  7. vol.16, pp.11, 2018,
  8. Panax species identification with the assistance of DNA data vol.65, pp.7, 2018,
  9. Comprehensive analysis of Panax ginseng root transcriptomes vol.15, pp.1, 2015,


Supported by : Agriculture and Forestry, Ministry for Food, Agriculture, Forestry and Fisheries, Rural Development Administration