DOI QR코드

DOI QR Code

Expression Profiling of WSSV ORF 199 and Shrimp Ubiquitin Conjugating Enzyme in WSSV Infected Penaeus monodon

  • Jeena, K. (Aquatic Environment and Health Management Division, Central Institute of Fisheries Education) ;
  • Prasad, K. Pani (Aquatic Environment and Health Management Division, Central Institute of Fisheries Education) ;
  • Pathan, Mujahid Khan (Fish Genetics and Biotechnology Division, Central Institute of Fisheries Education) ;
  • Babu, P. Gireesh (Fish Genetics and Biotechnology Division, Central Institute of Fisheries Education)
  • Received : 2011.12.08
  • Accepted : 2012.04.23
  • Published : 2012.08.01

Abstract

White spot syndrome virus (WSSV) is one of the major viral pathogens affecting shrimp aquaculture. Four proteins, WSSV199, WSSV 222, WSSV 249 and WSSV 403, from WSSV are predicted to encode a RING-H2 domain, which in presence of ubiquitin conjugating enzyme (E2) in shrimp can function as viral E3 ligase and modulate the host ubiquitin proteasome pathway. Modulation of host ubiquitin proteasome pathway by viral proteins is implicated in viral pathogenesis. In the present study, a time course expression profile analysis of WSSV Open Reading Frame (ORF) 199 and Penaeus monodon ubiquitin conjugating enzyme (PmUbc) was carried out at 0, 3, 6, 12, 24, 48 and 72 h post WSSV challenge by semi-quantitative RT-PCR as well as Real Time PCR. EF1${\alpha}$ was used as reference control to normalize the expression levels. A significant increase in PmUbc expression at 24 h post infection (h.p.i) was observed followed by a decline till 72 h.p.i. Expression of WSSV199 was observed at 24 h.p.i in WSSV infected P. monodon. Since the up-regulation of PmUbc was observed at 24 h.p.i where WSSV199 expression was detected, it can be speculated that these proteins might interact with host ubiquitination pathway for viral pathogenesis. However, further studies need to be carried out to unfold the molecular mechanism of interaction between host and virus to devise efficient control strategies for this chaos in the shrimp culture industry.

Keywords

WSSV 199;Shrimp;Ubiquitin Conjugating Enzyme;Penaeus monodon

References

  1. Arturo. 2010. White spot syndrome virus: an overview on an emergent concern. Vet. Res. 41:43. https://doi.org/10.1051/vetres/2010015
  2. Attwood, T. S., Jason L Blum, Kevin J Kroll, Vishal Patel, Detlef Birkholz, Nancy J Szabo, Suzanne Z Fisher, Robert McKenna, Martha Campbell-Thompson and Nancy D Denslow. 2007. Distinct expression and activity profiles of largemouth bass (Micropterus salmoides) estrogen receptors in response to estradiol and nonylphenol. J. Mol. Endocrinol. 39:223-237. https://doi.org/10.1677/JME-07-0038
  3. Blanchette, P. and E. P. Branton. 2009. Manipulation of the ubiquitin-proteasome pathway by small DNA tumor viruses. Virology 384:317-323. https://doi.org/10.1016/j.virol.2008.10.005
  4. Chou, H. Y., C. Y. Huang, C. H. Wang, H. C. Chiang and C. F Lo. 1995. Pathogenecity of a Baculovirus infection causing white spot syndrome in cultured penaied shrimp in Taiwan. Dis. Aquat. Org. 23:165-173. https://doi.org/10.3354/dao023165
  5. Ciechanover, A. Orian and A. L. Schwartz. 2000. Ubiquitin- mediated proteolysis: biological regulation via destruction. Bioessays 22:442-451. https://doi.org/10.1002/(SICI)1521-1878(200005)22:5<442::AID-BIES6>3.0.CO;2-Q
  6. Ciechanover, A. 2003. The ubiquitin proteolytic system and pathogenesis of human diseases: a novel platform for mechanism -based drug targeting. Bio-Chem. Soc. Trans. 31: 474-481. https://doi.org/10.1042/BST0310474
  7. Coscoy, L. and D. Ganem. 2003. PHD domains and E3 ubiquitin ligases: viruses make the connection. Trends Cell Biol. 13:7-12. https://doi.org/10.1016/S0962-8924(02)00005-3
  8. Deshaies, R. J. 1999. SCF and Cullin/ringH2 based ubiquitin ligases. Annu. Rev. Cell Dev. Biol. 15:435-467. https://doi.org/10.1146/annurev.cellbio.15.1.435
  9. Everett, R. D., W. C. Earnshaw, J. Findlay and P. Lomonte. 1999. Specific destruction of kinetochore protein CENP-C and disruption of cell division byherpes simplex virus immediate-early protein Vmw110. EMBO J. 18:1526-1538. https://doi.org/10.1093/emboj/18.6.1526
  10. Fang, H. and J. Kwang. 2008. Identification and characterization of a new E3 ubiquitin ligase in white spot syndrome virus involved in virus latency. Virology 5:151. https://doi.org/10.1186/1743-422X-5-151
  11. Galinier, R. E., H. Gout, L. J. Jacob, Wood and J. Chroboczek. 2002. Adenovirus protein involved in virus internalization recruits ubiquitin protein ligases. Biochemistry 41:14299-14305. https://doi.org/10.1021/bi020125b
  12. Harty, R. N., M. E. Brown, J. P. Mc Gettigan, G. Wang, H. R. Jayakar, J. M. Huibregtse, M. A. Whitt and M. J. Schnell. 2001. Rhabdoviruses and the cellular ubiquitin-proteosome system: a budding interaction. J. Virol. 75:10623-10629. https://doi.org/10.1128/JVI.75.22.10623-10629.2001
  13. Haas, A. L. and I. A. Rose. 1981. Hemin inhibits ATP dependent ubiquitin dependent proteolysis: role of hemin in regulating ubiquitin conjugate degradation. Proc. Natl. Acad. Sci. USA. 78: 6845-6848. https://doi.org/10.1073/pnas.78.11.6845
  14. He, F. B., J. Fenner, A. K. Godwin and J. Kwang. 2006. White spot syndrome virus open reading frame 222 encodes a viral E3 ligase and mediates degradation of a host tumour suppressor via ubiquitination. J. Virol. 80:3884-3892. https://doi.org/10.1128/JVI.80.8.3884-3892.2006
  15. Hershko, A., A. Ciechanover, H. Heller, A. L. Haas and I. A. Rose. 1980. Proposed role of ATP in protein breakdown conjugation of protein with multiple chains of the polypeptide of ATP dependant proteolysis. Proc. Natl. Acad. Sci. USA. 77:1783-1786. https://doi.org/10.1073/pnas.77.4.1783
  16. Hershko, A. and A. Ciechanover. 1998. The ubiquitin system. Annu. Rev. Biochem. 67:425-479. https://doi.org/10.1146/annurev.biochem.67.1.425
  17. Imai, N., N. Matsuda, K. J. Tanaka, A. Nakano, S. Matsumoto and W. K. Kwang. 2003. Ubiquitin ligase activities of Bombyx mori Nucleopolyhedrovirus RING finger proteins. J. Virol. 77:923-930. https://doi.org/10.1128/JVI.77.2.923-930.2003
  18. Kemp, L. M. and D. S. Latchman. 1988. The herpes simplex virus type I immediate-early protein ICP 4 specifically induces increased transcription of human ubiquitin B gene without affecting the ubiquitin A and C genes. Virology 166:258-261. https://doi.org/10.1016/0042-6822(88)90170-5
  19. Kimura, N., N. Shimada, M. Fukunda, Y. Ishijima, H. Miyazaki and A. Ishii. 2000. Regulation of cellular functions by nucleoside diphosphate kinases in mammals. J. Bioenerg. Biomembr. 32:309-315. https://doi.org/10.1023/A:1005549315846
  20. Laney, J. D. and M. Hochstrasser. 1999. Substrate targeting in the ubiquitin system. Cell 97:427-430. https://doi.org/10.1016/S0092-8674(00)80752-7
  21. Latchman, D. S., J. K. Estridge and L. M. Kemp. 1987. Transcriptional induction of the ubiquitin gene during herpes simplex virus infection is dependent upon the viral immediate -early protein, ICP4. Nucleic Acid Res. 15:7283-7293. https://doi.org/10.1093/nar/15.18.7283
  22. Lorick, K. L., J. P. Jensen, S. Fang, A. M. Ong, S. Hatakeyama and A. M. Weissman. 1999. RING fingers mediate ubiquitin-conjugating enzyme (E2) dependant ubiquitination. Proc. Natl. Acad. Sci. USA 96:11364-11369. https://doi.org/10.1073/pnas.96.20.11364
  23. Nakano, H., H. Koube, S. Umezawa, K. Monoyama, M. Hiraoka, K. Inouye and N. Oseko. 1994. Mass mortalities of cultured Kuruma shrimp, Penaeus japonicus, in Japan in 1993: Epizootiological survey and infection trials. Fish Pathol. 29: 135-139. https://doi.org/10.3147/jsfp.29.135
  24. Park, J. H., Y. S. Lee, S. Lee and Y. Lee. 1998. An infectious viral disease of penaeid shrimp newly found in Korea. Dis. Aquat.Org. 23:165-173.
  25. Parkinson, J. and R. D. Everett. 2001. Alphaherpesvirus proteins related to herpes simplex virus type 1 ICP0 induce the formation of co localizing, conjugated ubiquitin. J. Virol. 75:5357-5362. https://doi.org/10.1128/JVI.75.11.5357-5362.2001
  26. Pickart, C. M. 2001. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70:503-533. https://doi.org/10.1146/annurev.biochem.70.1.503
  27. Prikhod'ko, E. A. and L. K. Miller. 1998. Role of Baculovirus ie-2 and its RING finger in cell cycle arrest. J. Virol. 72:684-692.
  28. Thomas, M., D. Pim and L. Banks. 1999. The role of the E6-p53 interaction in the molecular pathogenesis of HPV. Oncogene 18:7690-7700. https://doi.org/10.1038/sj.onc.1202953
  29. Van Hulten, M. C., J. Witteveldt, S. Peters, N. Kloosterboer, R. Tarchini and M. Fiers. 2001. The white spot syndrome virus genome sequence. Virology 286:7-22. https://doi.org/10.1006/viro.2001.1002
  30. Vazquez, A. P., Aswathy Sreedharan and Carol L. Bender. 2010. Transcriptional studies of the hrpM/opgH gene in Pseudomonas syringae during biofilm formation and in response to different environmental challenges. Environ. Microbiol. 12:1452-1467.
  31. Wang, Z., H. K. Chua, A. A. Gusti, F. He, B. Fenner, I. Manopo, H. Wang and J. Kwang. 2005. RING-H2 protein WSSV 249 from white spot syndrome virus sequesters a shrimp ubiquitin- conjugating enzyme, PvUbc, for viral pathogenesis. J. Virol. 79:8764-8772. https://doi.org/10.1128/JVI.79.14.8764-8772.2005
  32. Winberg, G. L., F. Matskova, P. Chen, D. Plant, G. Rotin, R. Gish, I. Ingham, Ernberg and T. Pawson. 2000. Latent membrane protein 2A of Epstein- Barr virus binds WW domain E3 protein-ubiquitin ligases that ubiquitinated B-cell tyrosine kinases. Mol. Cell. Biol. 20:8526-8535. https://doi.org/10.1128/MCB.20.22.8526-8535.2000
  33. Yamao, F. 1999. Ubiquitin system: selectivity and timing of protein destruction. J. Biochem. 125:223-229. https://doi.org/10.1093/oxfordjournals.jbchem.a022277
  34. Yang, F., J. He, X. Lin, Q. Li, D. Pan and X. Zhang. 2001. Complete genome sequence of the shrimp white spot bacilliform virus. J. Virol. 75:11811-11820. https://doi.org/10.1128/JVI.75.23.11811-11820.2001
  35. Yasuda, J., E. Hunter, M. Nakao and H. Shida. 2002. Functional involvement of a novel Nedd4-like ubiquitin ligase on retrovirus budding. EMBO Rep. 3:636-640. https://doi.org/10.1093/embo-reports/kvf132

Cited by

  1. Insight into a Transcriptional Adaptor Zinc Finger Encoded by a Putative Protein in the White Spot Syndrome Virus Genome pp.1867-1462, 2017, https://doi.org/10.1007/s12539-017-0268-x
  2. Identification and characterization of novel double zinc fingers encoded by putative proteins in genome of white spot syndrome virus pp.1432-8798, 2019, https://doi.org/10.1007/s00705-019-04150-y