DOI QR코드

DOI QR Code

Microarray Analysis of Gene Expression in the Uterine Endometrium during the Implantation Period in Pigs

  • Kim, Min-Goo (Division of Biological Science and Technology, Institute of Biomaterials, and IPAID, Yonsei University) ;
  • Seo, Hee-Won (Division of Biological Science and Technology, Institute of Biomaterials, and IPAID, Yonsei University) ;
  • Choi, Yo-Han (Division of Biological Science and Technology, Institute of Biomaterials, and IPAID, Yonsei University) ;
  • Shim, Jang-Soo (Division of Biological Science and Technology, Institute of Biomaterials, and IPAID, Yonsei University) ;
  • Kim, Hee-Bal (Department of Agricultural Biotechnology, Seoul National University) ;
  • Lee, Chang-Kyu (Department of Agricultural Biotechnology, Seoul National University) ;
  • Ka, Hak-Hyun (Division of Biological Science and Technology, Institute of Biomaterials, and IPAID, Yonsei University)
  • Received : 2012.02.10
  • Accepted : 2012.04.24
  • Published : 2012.08.01

Abstract

During embryo implantation in pigs, the uterine endometrium undergoes dramatic morphological and functional changes accompanied with dynamic gene expression. Since the greatest amount of embryonic losses occur during this period, it is essential to understand the expression and function of genes in the uterine endometrium. Although many reports have studied gene expression in the uterine endometrium during the estrous cycle and pregnancy, the pattern of global gene expression in the uterine endometrium in response to the presence of a conceptus (embryo/fetus and associated extraembryonic membranes) has not been completely determined. To better understand the expression of pregnancy-specific genes in the endometrium during the implantation period, we analyzed global gene expression in the endometrium on day (D) 12 and D15 of pregnancy and the estrous cycle using a microarray technique in order to identify differentially expressed endometrial genes between D12 of pregnancy and D12 of the estrous cycle and between D15 of pregnancy and D15 of the estrous cycle. Results showed that the global pattern of gene expression varied with pregnancy status. Among 23,937 genes analyzed, 99 and 213 up-regulated genes and 92 and 231 down-regulated genes were identified as differentially expressed genes (DEGs) in the uterine endometrium on D12 and D15 of pregnancy compared to D12 and D15 of the estrous cycle, respectively. Functional annotation clustering analysis showed that those DEGs included genes involved in immunity, steroidogenesis, cell-to-cell interaction, and tissue remodeling. These findings suggest that the implantation process regulates differential endometrial gene expression to support the establishment of pregnancy in pigs. Further analysis of the genes identified in this study will provide insight into the cellular and molecular bases of the implantation process in pigs.

Keywords

Pig;Uterus;Endometrium;Implantation;Microarray

Acknowledgement

Supported by : Rural Development Administration, National Research Foundation

References

  1. Banchereau, J., F. Briere, C. Caux, J. Davoust, S. Lebecque, Y. J. Liu, B. Pulendran and K. Palucka. 2000. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18:767-811. https://doi.org/10.1146/annurev.immunol.18.1.767
  2. Bazer, F. W. and W. W. Thatcher. 1977. Theory of maternal recognition of pregnancy in swine based on estrogen controlled endocrine versus exocrine secretion of prostaglandin F2alpha by the uterine endometrium. Prostaglandins 14:397-400. https://doi.org/10.1016/0090-6980(77)90185-X
  3. Bazer, F. W., J. L. Vallet, R. M. Roberts, D. C. Sharp and W. W. Thatcher. 1986. Role of conceptus secretory products in establishment of pregnancy. J. Reprod. Fertil. 76:841-850. https://doi.org/10.1530/jrf.0.0760841
  4. Bennett, G. L. and K. A. Leymaster. 1989. Integration of ovulation rate, potential embryonic viability and uterine capacity into a model of litter size in swine. J. Anim. Sci. 67:1230-1241.
  5. Bischof, R. J., R. Lee, C. S. Lee and E. Meeusen. 1996. Dynamic changes in the lymphocyte subpopulations of pig uterine lymph nodes. Vet. Immunol. Immunopathol. 51:315-324. https://doi.org/10.1016/0165-2427(95)05529-0
  6. Caballero, V., R. Ruiz, J. A. Sainz, M. Cruz, M. A. Lopez-Nevot, J. J. Galan, L. M. Real, F. de Castro, V. Lopez-Villaverde and A. Ruiz. 2005. Preliminary molecular genetic analysis of the Receptor Interacting Protein 140 (RIP140) in women affected by endometriosis. J. Exp. Clin. Assist. Reprod. 2:11. https://doi.org/10.1186/1743-1050-2-11
  7. Carson, D. D., M. M. DeSouza and E. G. Regisford. 1998. Mucin and proteoglycan functions in embryo implantation. Bioessays 20:577-583. https://doi.org/10.1002/(SICI)1521-1878(199807)20:7<577::AID-BIES9>3.0.CO;2-H
  8. Cencic, A., M. Guillomot, S. Koren and C. La Bonnardiere. 2003. Trophoblastic interferons: do they modulate uterine cellular markers at the time of conceptus attachment in the pig? Placenta 24:862-869. https://doi.org/10.1016/S0143-4004(03)00135-8
  9. Croy, B. A., W. Wood and G. J. King. 1987. Evaluation of intrauterine immune suppression during pregnancy in a species with epitheliochorial placentation. J. Immunol. 139:1088-1095.
  10. Dantzer, V. 1985. Electron microscopy of the initial stages of placentation in the pig. Anat. Embryol. (Berl). 172:281-293. https://doi.org/10.1007/BF00318976
  11. Fritah, A. 2009. Control of skeletal muscle metabolic properties by the nuclear receptor corepressor RIP140. Appl. Physiol. Nutr. Metab. 34:362-367. https://doi.org/10.1139/H09-026
  12. Garlow, J. E., H. Ka, G. A. Johnson, R. C. Burghardt, L. A. Jaeger and F. W. Bazer. 2002. Analysis of osteopontin at the maternal-placental interface in pigs. Biol. Reprod. 66:718-725. https://doi.org/10.1095/biolreprod66.3.718
  13. Geisert, R. D., R. H. Renegar, W. W. Thatcher, R. M. Roberts and F. W. Bazer. 1982. Establishment of pregnancy in the pig: I. Interrelationships between preimplantation development of the pig blastocyst and uterine endometrial secretions. Biol. Reprod. 27:925-939. https://doi.org/10.1095/biolreprod27.4.925
  14. Geisert, R. D., R. M. Brenner, R. J. Moffatt, J. P. Harney, T. Yellin and F. W. Bazer. 1993.Changes in oestrogen receptor protein, mRNA expression and localization in the endometrium of cyclic and pregnant gilts. Reprod. Fertil. Dev. 5:247-260. https://doi.org/10.1071/RD9930247
  15. Geisert, R. D., T. N. Pratt, F. W. Bazer, J. S. Mayes and G. H. Watson. 1994. Immunocytochemical localization and changes in endometrial progestin receptor protein during the porcine oestrous cycle and early pregnancy. Reprod. Fertil. Dev. 6:749-760. https://doi.org/10.1071/RD9940749
  16. Geisert, R. D. and J. V. Yelich. 1997. Regulation of conceptus development and attachment in pigs. J. Reprod. Fertil. Suppl. 52:133-149.
  17. Gendler, S. J. and A. P. Spicer. 1995. Epithelial mucin genes. Annu. Rev. Physiol. 57:607-634. https://doi.org/10.1146/annurev.ph.57.030195.003135
  18. Gipson, I. K., S. B. Ho, S. J. Spurr-Michaud, A. S. Tisdale, Q. Zhan, E. Torlakovic, J. Pudney, D. J. Anderson, N. W. Toribara and J. A. Hill 3rd. 1997. Mucin genes expressed by human female reproductive tract epithelia. Biol. Reprod. 56:999-1011. https://doi.org/10.1095/biolreprod56.4.999
  19. Glynn, D. J., B. T. Sherman, D. A. Hosack, J. Yang, M. W. Baseler, H. C. Lane and R. A. Lempicki. 2003. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 4:P3. https://doi.org/10.1186/gb-2003-4-5-p3
  20. Green, J. A., J. G. Kim, K. M. Whitworth, C. Agca and R. S. Prather. 2006. The use of microarrays to define functionally-related genes that are differentially expressed in the cycling pig uterus. Soc. Reprod. Fertil. Suppl. 62:163-176.
  21. Gupta, A., C. M. Dekaney, F. W. Bazer, M. M. Madrigal and J. A. Jaeger. 1998. Beta transforming growth factors (TGFbeta) at the porcine conceptus-maternal interface. Part II: uterine TGFbeta bioactivity and expression of immunoreactive TGFbetas (TGFbeta1, TGFbeta2, and TGFbeta3) and their receptors (type I and type II). Biol. Reprod. 59:911-917. https://doi.org/10.1095/biolreprod59.4.911
  22. Hanna, J., O. Wald, D. Goldman-Wohl, D. Prus, G. Markel, R. Gazit, G. Katz, R. Haimov-Kochman, N. Fujii, S. Yagel, A. Peled and Mandelboim O. 2003. CXCL12 expression by invasive trophoblasts induces the specific migration of CD16- human natural killer cells. Blood 102:1569-1577. https://doi.org/10.1182/blood-2003-02-0517
  23. Ka, H., H. Seo, M. Kim, S. Moon, H. Kim and C. K. Lee. 2008. Gene expression profiling of the uterus with embryos cloned by somatic cell nuclear transfer on day 30 of pregnancy. Anim. Reprod. Sci. 108:79-91. https://doi.org/10.1016/j.anireprosci.2007.07.008
  24. Ka, H., H. Seo, M. Kim, Y. Choi and C. K. Lee. 2009. Identification of differentially expressed genes in the uterine endometrium on day 12 of the estrous cycle and pregnancy in pigs. Mol. Reprod. Dev. 76:75-84. https://doi.org/10.1002/mrd.20935
  25. Ka, H., L. A. Jaeger, G. A. Johnson, T. E. Spencer and F. W. Bazer. 2001. Keratinocyte growth factor is up-regulated by estrogen in the porcine uterine endometrium and functions in trophectoderm cell proliferation and differentiation. Endocrinology 142:2303-2310. https://doi.org/10.1210/en.142.6.2303
  26. Ka, H., T. E. Spencer, G. A. Johnson and F. W. Bazer. 2000. Keratinocyte growth factor: expression by endometrial epithelia of the porcine uterus. Biol. Reprod. 62:1772-1778. https://doi.org/10.1095/biolreprod62.6.1772
  27. Kaeoket, K., E. Persson and A. M. Dalin. 2003. Influence of pre-ovulatory insemination and early pregnancy on the infiltration by cells of the immune system in the sow endometrium. Anim. Reprod. Sci. 75:55-71. https://doi.org/10.1016/S0378-4320(02)00230-0
  28. Kao, L. C., S. Tulac, S. Lobo, B. Imani, J. P. Yang, A. Germeyer, K. Osteen, R. N. Taylor, B. A. Lessey and L. C. Giudice. 2002. Global gene profiling in human endometrium during the window of implantation. Endocrinology 143:2119-2138. https://doi.org/10.1210/en.143.6.2119
  29. Kim, J. G., J. L. Vallet, G. A. Rohrer and R. K. Christenson. 2002. Characterization of porcine uterine estrogen sulfotransferase. Domest. Anim. Endocrinol. 23:493-506. https://doi.org/10.1016/S0739-7240(02)00172-8
  30. La Bonnardiere, C., F. Martinat-Botte, M. Terqui, F. Lefevre, K. Zouari, J. Martal and F. W. Bazer. 1991. Production of two species of interferon by Large White and Meishan pig conceptuses during the peri-attachment period. J. Reprod. Fertil. 91:469-478. https://doi.org/10.1530/jrf.0.0910469
  31. Lee, S. H., S. H. Zhao, J. C. Recknor, D. Nettleton, S. Orley, S. K. Kang, B. C. Lee, W. S. Hwang and C. K. Tuggle. 2005. Transcriptional profiling using a novel cDNA array identifies differential gene expression during porcine embryo elongation. Mol. Reprod. Dev. 71:129-139. https://doi.org/10.1002/mrd.20291
  32. Lefevre, F., M. Guillomot, S. D'Andrea, S. Battegay and C. La Bonnardiere. 1998. Interferon-delta: the first member of a novel type I interferon family. Biochimie 80:779-788. https://doi.org/10.1016/S0300-9084(99)80030-3
  33. Leonardsson, G., M. A. Jacobs, R. White, R. Jeffery, R. Poulsom, S. Milligan and M. Parker. 2002. Embryo transfer experiments and ovarian transplantation identify the ovary as the only site in which nuclear receptor interacting protein 1/RIP140 action is crucial for female fertility. Endocrinology 143:700-707. https://doi.org/10.1210/en.143.2.700
  34. Liu, G., H. Lin, X. Zhang, Q. Li, H. Wang, D. Qian, J. Ni and C. Zhu. 2004. Expression of Smad2 and Smad4 in mouse uterus during the oestrous cycle and early pregnancy. Placenta 25:530-537. https://doi.org/10.1016/j.placenta.2003.11.006
  35. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  36. Mansouri-Attia, N., J. Aubert, P. Reinaud, C. Giraud-Delville, G. Taghouti, L. Galio, R. E. Everts, S. Degrelle, C. Richard, I. Hue, X. Yang, X. C. Tian, H. A. Lewin, J. P. Renard and O. Sandra. 2009. Gene expression profiles of bovine caruncular and intercaruncular endometrium at implantation. Physiol. Genomics 39:14-27. https://doi.org/10.1152/physiolgenomics.90404.2008
  37. Massuto, D. A., E. C. Kneese, G. A. Johnson, R. C. Burghardt, R. N. Hooper, N. H. Ing and L. A. Jaeger. 2010. Transforming growth factor beta (TGFB) signaling is activated during porcine implantation: proposed role for latency-associated peptide interactions with integrins at the conceptus-maternal interface. Reproduction 139:465-478. https://doi.org/10.1530/REP-09-0447
  38. Moritani, S., R. Kushima, S. Ichihara, H. Okabe, T. Hattori, T. K. Kobayashi and S. G. Silverberg. 2005. Eosinophilic cell change of the endometrium: a possible relationship to mucinous differentiation. Mod. Pathol. 18:1243-1248. https://doi.org/10.1038/modpathol.3800412
  39. Murdoch, C. 2000. CXCR4: chemokine receptor extraordinaire. Immunol. Rev. 177:175-184. https://doi.org/10.1034/j.1600-065X.2000.17715.x
  40. Nephew, K. P., X. Long, E. Osborne, K. A. Burke, A. Ahluwalia and R. M. Bigsby. 2000. Effect of estradiol on estrogen receptor expression in rat uterine cell types. Biol. Reprod. 62:168-177. https://doi.org/10.1095/biolreprod62.1.168
  41. Ostrup, E., S. Bauersachs, H. Blum, E. Wolf and P. Hyttel. 2010. Differential endometrial gene expression in pregnant and nonpregnant sows. Biol. Reprod. 83:277-285. https://doi.org/10.1095/biolreprod.109.082321
  42. Reese, J., S. K. Das, B.C. Paria, H. Lim, H. Song, H. Matsumoto, K. L. Knudtson, R. N. DuBois and S. K. Dey. 2001. Global gene expression analysis to identify molecular markers of uterine receptivity and embryo implantation. J. Biol. Chem. 276:44137-44145. https://doi.org/10.1074/jbc.M107563200
  43. Repnik, U., T. Tilburgs, D. L. Roelen, B. J. van der Mast, H. H. Kanhai, S. Scherjon and F. H. Claas. 2008. Comparison of macrophage phenotype between decidua basalis and decidua parietalis by flow cytometry. Placenta 29:405-412. https://doi.org/10.1016/j.placenta.2008.02.004
  44. Ross, J. W., J. R. Malayer, J. W. Ritchey and R. D. Geisert. 2003a. Characterization of the interleukin-1beta system during porcine trophoblastic elongation and early placental attachment. Biol. Reprod. 69:1251-1259. https://doi.org/10.1095/biolreprod.103.015842
  45. Ross, J. W., M. D. Ashworth, A. G. Hurst, J. R. Malayer and R. D. Geisert. 2003b. Analysis and characterization of differential gene expression during rapid trophoblastic elongation in the pig using suppression subtractive hybridization. Reprod. Biol. Endocrinol. 1:23. https://doi.org/10.1186/1477-7827-1-23
  46. Satterfield, M. C., G. Song, K. J. Kochan, P. K. Riggs, R. M. Simmons, C. G. Elsik, D. L. Adelson, F. W. Bazer, H. Zhou and T. E. Spencer. 2009. Discovery of candidate genes and pathways in the endometrium regulating ovine blastocyst growth and conceptus elongation. Physiol. Genomics 39:85-99. https://doi.org/10.1152/physiolgenomics.00001.2009
  47. Seo, H., M. Kim,Y. Choi, C. K. Lee and H. Ka. 2008. Analysis of lysophosphatidic acid (LPA) receptor and LPA-induced endometrial prostaglandin-endoperoxide synthase 2 expression in the porcine uterus. Endocrinology 149:6166-6175. https://doi.org/10.1210/en.2008-0354
  48. Spencer, T. E. and F. W. Bazer. 2004. Conceptus signals for establishment and maintenance of pregnancy. Reprod. Biol. Endocrinol. 2:49. https://doi.org/10.1186/1477-7827-2-49
  49. Spencer, T. E., G. A. Johnson, F. W. Bazer and R. C. Burghardt. 2004. Implantation mechanisms: insights from the sheep. Reproduction 128:657-668. https://doi.org/10.1530/rep.1.00398
  50. ten Dijke, P. and C. S. Hill. 2004. New insights into TGF-beta-Smad signalling. Trends Biochem. Sci. 29:265-273. https://doi.org/10.1016/j.tibs.2004.03.008
  51. Tsai, S., J. P. Cassady, B. A. Freking, D. J. Nonneman, G. A. Rohrer and J. A. Piedrahita. 2006. Annotation of the Affymetrix porcine genome microarray. Anim. Genet. 37:423-424. https://doi.org/10.1111/j.1365-2052.2006.01460.x
  52. Tuo, W., J. P. Harney and F. W. Bazer. 1996. Developmentally regulated expression of interleukin-1 beta by peri-implantation conceptuses in swine. J. Reprod. Immunol. 31:185-198. https://doi.org/10.1016/0165-0378(96)00975-8
  53. Ushizawa, K., C. B. Herath, K. Kaneyama, S. Shiojima, A. Hirasawa, T. Takahashi, K. Imai, K. Ochiai, T. Tokunaga, Y. Tsunoda, G. Tsujimoto and K. Hashizume. 2004. cDNA microarray analysis of bovine embryo gene expression profiles during the pre-implantation period. Reprod. Biol. Endocrinol. 2:77. https://doi.org/10.1186/1477-7827-2-77
  54. Vallee, M., D. Beaudry, C. Roberge, J. J. Matte, R. Blouin and M. F. Palin. 2003. Isolation of differentially expressed genes in conceptuses and endometrial tissue of sows in early gestation. Biol. Reprod. 69:1697-1706. https://doi.org/10.1095/biolreprod.103.019307
  55. White, F. J., J. W. Ross, M. M. Joyce, R. D. Geisert, R. C. Burghardt and G. A. Johnson. 2005. Steroid regulation of cell specific secreted phosphoprotein 1 (osteopontin) expression in the pregnant porcine uterus. Biol. Reprod. 73:1294-1301. https://doi.org/10.1095/biolreprod.105.045153
  56. White, R., G. Leonardsson, I. Rosewell, M. Ann Jacobs, S. Milligan and M. Parker. 2000. The nuclear receptor co-repressor nrip1 (RIP140) is essential for female fertility. Nat. Med. 6:1368-1374. https://doi.org/10.1038/82183
  57. Whitworth, K. M., C. Agca, J. G. Kim, R. V. Patel, G. K. Springer, N. J. Bivens, L. J. Forrester, N. Mathialagan, J. A. Green and R. S. Prather. 2005. Transcriptional profiling of pig embryogenesis by using a 15-K member unigene set specific for pig reproductive tissues and embryos. Biol. Reprod. 72:1437-1451. https://doi.org/10.1095/biolreprod.104.037952
  58. Wu, X., D. J. Li, M. M. Yuan, Y. Zhu and M. Y. Wang. 2004. The expression of CXCR4/CXCL12 in first-trimester human trophoblast cells. Biol. Reprod. 70:1877-1885. https://doi.org/10.1095/biolreprod.103.024729
  59. Zhou, W. H., M. R. Du, L. Dong, J. Yu and D. J. Li. 2008. Chemokine CXCL12 promotes the cross-talk between trophoblasts and decidual stromal cells in human first-trimester pregnancy. Hum. Reprod. 23:2669-2679. https://doi.org/10.1093/humrep/den308
  60. Ziecik, A. J. 2002. Old, new and the newest concepts of inhibition of luteolysis during early pregnancy in pig. Domest. Anim. Endocrinol. 23:265-275. https://doi.org/10.1016/S0739-7240(02)00162-5

Cited by

  1. Analyses of Long Non-Coding RNA and mRNA profiling using RNA sequencing during the pre-implantation phases in pig endometrium vol.6, pp.1, 2016, https://doi.org/10.1038/srep20238
  2. Peri-conceptional under-nutrition alters transcriptomic profile in the endometrium during the peri-implantation period-The study in domestic pigs pp.09366768, 2017, https://doi.org/10.1111/rda.13068
  3. The identification of novel regions for reproduction trait in Landrace and Large White pigs using a single step genome-wide association study vol.31, pp.12, 2018, https://doi.org/10.5713/ajas.18.0072
  4. LncRNA882 regulates leukemia inhibitory factor (LIF) by sponging miR-15b in the endometrial epithelium cells of dairy goat pp.00219541, 2018, https://doi.org/10.1002/jcp.27272
  5. mRNA/lncRNA expression patterns and the function of fibrinogen-like protein 2 in Meishan pig endometrium during the preimplantation phases pp.1040452X, 2019, https://doi.org/10.1002/mrd.23109