Heat Shock Protein 70 Expression is Increased in the Liver of Neonatal Intrauterine Growth Retardation Piglets

  • Li, Wei (College of Animal Science and Technology, Nanjing Agricultural University (NJAU)) ;
  • Zhong, Xiang (College of Animal Science and Technology, Nanjing Agricultural University (NJAU)) ;
  • Zhang, Lili (College of Animal Science and Technology, Nanjing Agricultural University (NJAU)) ;
  • Wang, Yuanxiao (College of Animal Science and Technology, Nanjing Agricultural University (NJAU)) ;
  • Wang, Tian (College of Animal Science and Technology, Nanjing Agricultural University (NJAU))
  • Received : 2012.02.03
  • Accepted : 2012.05.24
  • Published : 2012.08.01


Intrauterine growth retardation (IUGR) leads to the dysfunction in digestive system, as well as the alteration in the expression of some functional proteins. Heat shock protein 70 (Hsp70) could be induced by various stress factors, but whether Hsp70 expression is changed in neonatal IUGR infants has not been demonstrated. This study was conducted to explore the expression of Hsp70 in the liver by using the IUGR piglet model. Liver and plasma samples were obtained from IUGR and normal birth weight (NBW) piglets at birth. The neonatal IUGR piglets had significantly lower liver weight than their counterparts. The activities of aspartate aminotransferase and alanine aminotransferase in serum were enhanced significantly in IUGR indicating liver dysfunction. The activities of superoxide dismutase (p<0.01), glutathione peroxidase (p<0.01) and catalase (p>0.05) were lower and the level of malondialdehybe was higher (p<0.05) in IUGR liver compared with in NBW. According to the results of histological tests, fatty hepatic infiltrates and cytoplasmic vacuolization were present in the liver of IUGR piglets, but not in NBW liver. The expression of Hsp70 protein was significantly higher (p<0.05) in IUGR piglet liver than in NBW. Similar to where the hepatic injuries were observed, location of Hsp70 was mostly in the midzonal hepatic lobule indicating that oxidative stress might be responsible for the increased expression of Hsp70.


Supported by : National Natural Science Foundation of China


  1. Ahn, S. G. and D. J. Thiele. 2003. Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Genes Dev. 17:516-528.
  2. Aucott, S. W., P. K. Donohue and F. J. Northington. 2004. Increased morbidity in severe early intrauterine growth restriction. J. Perinatol. 24:435-440.
  3. Baserga, M., M. A. Hale, R. A. McKnight, X. Yu, C. W. Callaway and R. H. Lane. 2005. Uteroplacental insufficiency alters hepatic expression, phosphorylation, and activity of the glucocorticoid receptor in fetal IUGR rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289:R1348-R1353.
  4. Bedirli, A., O. Sakrak, S. Muhtaroglu, I. Soyuer, I. Guler, A. Riza Erdogan and E. M. Sozuer. 2004. Ergothioneine pretreatment protects the liver from ischemia-reperfusion injury caused by increasing hepatic heat shock protein 70. J. Surg. Res. 122:96-102.
  5. Boehm, G., D. M. Müller, B. Teichmann and P. Krumbiegel. 1990. Influence of intrauterine growth retardation on parameters of liver function in low birth weight infants. Eur. J. Pediatr. 149: 396-398.
  6. Chiu, H. Y., L. Y. Tsao and R. C. Yang. 2009. Heat-shock response protects peripheral blood mononuclear cells (PBMCs) from hydrogen peroxide-induced mitochondrial disturbance. Cell Stress Chaperones 14:207-217.
  7. De Prins, F. A. and F. A. Van Assche. 1982. Intrauterine growth retardation and development of endocrine pancreas in the experimental rat. Neonatology 41:16-21.
  8. Flanagan, S. W., A. J. Ryan, C. V. Gisolfi and P. L. Moseley. 1995. Tissue-specific HSP70 response in animals undergoing heat stress. Am. J. Physiol. Regul. Integr. Comp. Physiol. 268:R28-R32.
  9. Gentili, S., J. L. Morrison and I. C. McMillen. 2009. Intrauterine growth restriction and differential patterns of hepatic growth and expression of IGF1, PCK2, and HSDL1 mRNA in the sheep fetus in late gestation. Biol. Reprod. 80:1121-1127.
  10. Guo, S., W. Wharton, P. Moseley and H. Shi. 2007. Heat shock protein 70 regulates cellular redox status by modulating glutathione-related enzyme activities. Cell Stress Chaperones 12:245-254.
  11. Inoue, K., M. Matsumoto, Y. Miyoshi and Y. Kobayashi. 2008. Elevated liver enzymes in women with a family history of diabetes. Diabetes Res. Clin. Pract. 79:e4-e7.
  12. Kalmar, B. and L. Greensmith. 2009. Induction of heat shock proteins for protection against oxidative stress. Adv. Drug Deliv. Rev. 61:310-318.
  13. Kanemura, H., K. Kusumoto, H. Miyake, S. Tashiro, K. Rokutan and M. Shimada. 2009. Geranylgeranylacetone prevents acute liver damage after massive hepatectomy in rats through suppression of a CXC Chemokine GRO1 and induction of heat shock proteins. J. Gastrointest. Surg. 13:66-73.
  14. King, Y. T., C. S. Lin, J. H. Lin and W. C. Lee. 2002. Whole-body hyperthermia-induced thermotolerance is associated with the induction of heat shock protein 70 in mice. J. Exp. Biol. 205: 273-278.
  15. Lane, R. H., N. K. MacLennan, J. L. Hsu, S. M. Janke and T. D. Pham. 2002. Increased hepatic peroxisome proliferator-activated receptor-$\gamma$ coactivator-1 gene expression in a rat model of intrauterine growth retardation and subsequent insulin resistance. Endocrinology 143:2486-2494.
  16. Latini, G., B. De Mitri, A. Del Vecchio, G. Chitano, C. De Felice and R. Zetterstrom. 2004. Foetal growth of kidneys, liver and spleen in intrauterine growth restriction: "programming" causing "metabolic syndrome" in adult age. Acta Paediatr. 93: 1635-1639.
  17. Li, H., C. Sui, F. Kong, H. Zhang, J. Liu and M. Dong. 2007. Expression of HSP70 and JNK-related proteins in human liver cancer: Potential effects on clinical outcome. Dig. Liver. Dis. 39:663-670.
  18. Lipsett, J., M. Tamblyn, K. Madigan, P. Roberts, J. C. Cool, S. I. Runciman, I. C. McMillen, J. Robinson and J. A. Owens. 2006. Restricted fetal growth and lung development: A morphometric analysis of pulmonary structure. Pediatr. Pulmonol. 41:1138-1145.
  19. Liu, Y., N. Li, L. You, X. Liu, H. Li and X. Wang. 2008. HSP70 is associated with endothelial activation in placental vascular diseases. Mol. Med. 14:561-566.
  20. MacDonald, G. A., K. R. Bridle, P. J. Ward, N. I. Walker, K. Houglum, D. K. George, J. L. Smith, L. W. Powell, D. H. Crawford and G. A. Ramm. 2001. Lipid peroxidation in hepatic steatosis in humans is associated with hepatic fibrosis and occurs predominately in acinar zone 3. J. Gastroenterol. Hepatol. 16:599-606.
  21. Otaka, M., M. Odashima and S. Watanabe. 2006. Role of heat shock proteins (molecular chaperones) in intestinal mucosal protection. Biochem. Biophys. Res. Commun. 348:1-5.
  22. Padmini, E., B. Vijaya Geetha and M. Usha Rani. 2009. Pollution induced nitrative stress and heat shock protein 70 overexpression in fish liver mitochondria. Sci. Total Environ. 407:1307-1317.
  23. Robert, J. 2003. Evolution of heat shock protein and immunity. Dev. Comp. Immunol. 27:449-464.
  24. Savransky, V., S. Bevans, A. Nanayakkara, J. Li, P. L. Smith, M. S. Torbenson and V. Y. Polotsky. 2007. Chronic intermittent hypoxia causes hepatitis in a mouse model of diet-induced fatty liver. Am. J. Physiol. Gastrointest. Liver Physiol. 293: G871-G877.
  25. Schwimmer, J. B., C. Behling, R. Newbury, R. Deutsch, C. Nievergelt, N. J. Schork and J. E. Lavine. 2005. Histopathology of pediatric nonalcoholic fatty liver disease. Hepatology 42:641-649.
  26. Simmons, R. A. 2006. Developmental origins of diabetes: the role of oxidative stress. Free Radic. Biol. Med. 40:917-922.
  27. Simmons, R. A., I. Suponitsky-Kroyter and M. A. Selak. 2005. Progressive accumulation of mitochondrial DNA mutations and decline in mitochondrial function lead to $\beta$-cell failure. J. Biol. Chem. 280:28785-28791.
  28. Trahair, J. F., T. M. DeBarro, J. S. Robinson and J. A. Owens. 1997. Restriction of nutrition in utero selectively inhibits gastrointestinal growth in fetal sheep. J. Nutr. 127:637-641.
  29. Wang, J., L. Chen, D. Li, Y. Yin, X. Wang, P. Li, L. J. Dangott, W. Hu and G. Wu. 2008. Intrauterine growth restriction affects the proteomes of the small intestine, liver, and skeletal muscle in newborn pigs. J. Nutr. 138:60-66.
  30. Wang, T., Y. Huo, F. Shi, R. Xu and R. Hutz. 2005. Effects of intrauterine growth retardation on development of the gastrointestinal tract in neonatal pigs. Biol. Neonate 88:66-72.
  31. Wang, Y., L. Zhang, G. Zhou, Z. Liao, H. Ahmad, W. Liu and T. Wang. 2012. Dietary l-arginine supplementation improves the intestinal development through increasing mucosal Akt and mammalian target of rapamycin signals in intra-uterine growth retarded piglets. Br. J. Nutr. 1:1-11.
  32. Wataba, K., T. Saito, M. Takeuchi, M. Nakayama, N. Suehara and R. Kudo. 2004. Changed expression of heat shock proteins in various pathological findings in placentas with intrauterine fetal growth restriction. Med. Electron Microsc. 37:170-176.
  33. Yan, L., G. P. Ropella, S. Park, M. S. Roberts and C. A. Hunt. 2008. Modeling and simulation of hepatic drug disposition using a physiologically based, multi-agent in silico liver. Pharm. Res. 25:1023-1036.
  34. Zadro na, M., M. Gawlik, B. Nowak, A. Marcinek, H. Mrowiec, S. Walas, R. Wietecha-Pos uszny and P. Zagrodzki. 2009. Antioxidants activities and concentration of selenium, zinc and copper in preterm and IUGR human placentas. J. Trace Elem. Med. Biol. 23:144-148.
  35. Zhang, H. J., S. R. Doctrow, L. W. Oberley and K. C. Kregel. 2006. Chronic antioxidant enzyme mimetic treatment differentially modulates hyperthermia-induced liver HSP70 expression with aging. J. Appl. Physiol. 100:1385-1391.
  36. Zhang, H. J., L. Xu, V. J. Drake, L. Xie, L. W. Oberley and K. C. Kregel. 2003. Heat-induced liver injury in old rats is associated with exaggerated oxidative stress and altered transcription factor activation. FASEB J. 17:2293-2295.
  37. Zhong, X., T. Wang, X. Zhang and W. Li. 2010. Heat shock protein 70 is upregulated in the intestine of intrauterine growth retardation piglets. Cell Stress Chaperones 15:335-342.

Cited by

  1. Molecular mechanisms of intrauterine growth restriction pp.1476-4954, 2017,
  2. Choline supplementation improves the lipid metabolism of intrauterine-growth-restricted pigs vol.31, pp.5, 2018,