Estimation of Effective Population Size in the Sapsaree: A Korean Native Dog (Canis familiaris)

  • Alam, M. ;
  • Han, K.I. ;
  • Lee, D.H. ;
  • Ha, J.H. ;
  • Kim, J.J.
  • Received : 2012.01.29
  • Accepted : 2012.04.16
  • Published : 2012.08.01


Effective population size ($N_e$) is an important measure to understand population structure and genetic variability in animal species. The objective of this study was to estimate $N_e$ in Sapsaree dogs using the information of rate of inbreeding and genomic data that were obtained from pedigree and the Illumina CanineSNP20 (20K) and CanineHD (170K) beadchips, respectively. Three SNP panels, i.e. Sap134 (20K), Sap60 (170K), and Sap183 (the combined panel from the 20K and 170K), were used to genotype 134, 60, and 183 animal samples, respectively. The $N_e$ estimates based on inbreeding rate ranged from 16 to 51 about five to 13 generations ago. With the use of SNP genotypes, two methods were applied for $N_e$ estimation, i.e. pair-wise $r^2$ values using a simple expectation of distance and $r^2$ values under a non-linear regression with respective distances assuming a finite population size. The average pair-wise $N_e$ estimates across generations using the pairs of SNPs that were located within 5 Mb in the Sap134, Sap60, and Sap183 panels, were 1,486, 1,025 and 1,293, respectively. Under the non-linear regression method, the average $N_e$ estimates were 1,601, 528, and 1,129 for the respective panels. Also, the point estimates of past $N_e$ at 5, 20, and 50 generations ago ranged between 64 to 75, 245 to 286, and 573 to 646, respectively, indicating a significant $N_e$ reduction in the last several generations. These results suggest a strong necessity for minimizing inbreeding through the application of genomic selection or other breeding strategies to increase $N_e$, so as to maintain genetic variation and to avoid future bottlenecks in the Sapsaree population.


Effective Population Size;Inbreeding Rate;Linkage Disequilibrium;SNP;Sapsaree Dog


  1. AKC (The American Kennel Club). 1998. The complete dog book. Howell Book House, New York, USA.
  2. Aspi, J., E. Roininen, M. Ruokonen, I. Kojola and C. Vilà. 2006. Genetic diversity, population structure, effective population size and demographic history of the Finnish wolf population. Mol. Ecol. 15:1561-1576.
  3. Bartley, D., M. Bagley, G. Gall and B. Bentley. 1992. Use of linkage disequilibrium data to estimate effective size of hatchery and natural fish populations. Conserv. Biol. 6:365-375.
  4. Beaumont, M. A. 2003. Conservation genetics. pp 779-812 in Handbook of Statistical Genetics (Ed. D. J. Balding, M. Bishop and C. Cannings). Wiley, London.
  5. Berg, P. 2009. Original Eva User's Guide by Peer Berg. Danish Faculty of Agricultural Sciences, Department of Animal, Breeding and Genetics, P.O. Box 50, DK-8830 Tjele, Denmark, E-mail:
  6. Calboli, F. C. F., J. Sampson, N. Fretwell and D. J. Balding. 2008. Population structure and inbreeding from pedigree analysis of pure bred dogs. Genetics 179:593-601.
  7. Colleau, J. J. and T. Tribout. 2008. Optimized management of genetic variability in selected pig populations. J. Anim. Breed. Genet. 125:291-300.
  8. Crow, J. F. and M. Kimura. 1970. An introduction to population genetics theory. Burgess Publishing, Minneapolis.
  9. Daetwyler, H. D., B. Villanueva, P. Bijma and J. A. Woolliams. 2007. Inbreeding in genome-wide selection. J. Anim. Breed. Genet. 124:369-376.
  10. Duchev, Z., O. Distl and E. Groeneveld. 2006. Early warning system for loss of diversity in European livestock breeds. Archiv. Anim. Breed. 49:521-531.
  11. Falconer, D. S. and F. C. Mackay. 1996. Introduction to Quantitative Genetics, 4th ed., Longman Group Ltd, England.
  12. FAO. 1998. Secondary guidelines for development of national farm animal genetic resources management plans: Management of small populations at risk. UN Food and Agric. Org.
  13. FAO. 2000. Secondary guidelines for development of national farm animal genetic resources management plans: Management of small populations at risk. UN Food and Agric. Org.
  14. Gutierrez, J. P., I. Cervantes, A. Molina, M. Valera and F. Goyache. 2008. Individual increase in inbreeding allows estimating effective sizes from pedigrees. Genet. Sel. Evol. 40:359-378.
  15. Gutierrez, J. P., I. Cervantes and F. Goyache. 2009. Improving the estimation of realized effective population sizes in farm animals. J. Anim. Breed. Genet. 126:327-332.
  16. Han, K. I., M. Alam, Y. M. Lee, D. H. Lee, J. H. Ha and J. J. Kim. 2010. A study on the morphology and Behavior of the Sapsaree: A Korean native dog (Canis familiaris). J. Anim. Sci. Technol. 52:481-490.
  17. Hayes, B. J., P. M. Visscher, H. C. McPartlan and M. E. Goddard. 2003. Novel multi locus measure of linkage disequilibrium to estimate past effective population size. Genome Res. 13:635-643.
  18. Hill, W. G. 1981. Estimation of effective population size from data on linkage disequilibrium. Genet. Res. 38:209-216.
  19. Hill, W. G. and A. Robertson. 1968. Linkage disequilibrium in finite populations. Theor. Appl. Genet. 38:226-231.
  20. Lander, E. S. and N. J. Schork. 1994. Genetic dissection of complex traits. Science 265:2037-2048.
  21. Leberg, P. 2005. Genetic approaches for estimating the effective size of populations. J. Wildl. Manage. 69:1385-1399.[1385:GAFETE]2.0.CO;2
  22. Lewontin, R. C. 1964. The interaction of selection and linkage. I. General considerations: heterotic models. Genetics 49:49-67.
  23. Lindblad-Toh, K., C. M. Wade, T. S. Mikkelsen, E. K. Karlsson, D. B. Jaffe, M. Kamal, M. Clamp, J. L. Chang, E. J. Kulbokas, M. C. Zody et al., 2005. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438:803-819.
  24. Lou, X.Y., R. J. Todhunter, M. Lin, Q. Lu, T. Liu, Z. Wang, S. P. Bliss, G. Casella, G. M. Acland, G. Lust and R. Wu. 2003. The extent and distribution of linkage disequilibrium in a multi-hierarchic outbred canine pedigree. Mamm. Genome 14:555-564.
  25. MacCluer, J. W., A. J. Boyce, B. Dyke, L. R. Weitkamp, D. W. Pfenning and C. J. Parsons. 1983. Inbreeding and pedigree structure in Standardbred horses. J. Hered. 74:394-399.
  26. Maignel, L., D. Boichard and E. Verrier. 1996. Genetic variability of French dairy breeds estimated from pedigree information. Bulletin - International Bull Evaluation Service 14:49-54.
  27. Meuwissen, T. H. E. 1997. Maximising the response of selection with a predefined rate of inbreeding. J. Anim. Sci. 75:934-940.
  28. Meuwissen, T. H. E. 2009. Genetic management of small populations: A review. Acta Agric. Scand. Section A. Anim. Sci. 59:71-79.
  29. Meuwissen, T. H. E., B. Hayes and M. E. Goddard. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819-1829.
  30. Nomura, T. 2009. Interval estimation of the effective population size from heterozygote-excess in SNP markers. Biometrical Journal 51:996-1016 DOI:10.1002/bimj.200900097.
  31. Nomura, T., T. Honda and F. Mukai. 2001. Inbreeding and effective population size of Japanese Black cattle. J. Anim. Sci. 79:366-370.
  32. Ostrander, E. A. and L. Kruglyak. 2000. Unleashing the canine genome. Genome Res. 10:1271-1274.
  33. Randi, E., V. Lucchini, M. F. Christensen, N. Mucci, S. M. Funk, G. Dolf and V. Loeschke. 2000. Mitochondrial DNA variability in Italian and east European wolves: detecting the consequences of small population size and hybridization. Conserv. Biol. 14:464-473.
  34. Rogers, C. A. and A. H. Brace. 1995. The international encyclopedia of dogs. Howell Book House, New York, USA.
  35. Sanchez, L., P. Bijma and J. A. Woolliams. 2003. Minimizing inbreeding by managing genetic contributions across generations. Genetics 164:1589-1595.
  36. Sargolzaei, M., H. Iwaisaki and J. J. Colleau. 2006. CFC (Contribution, Inbreeding and Coancestry) Release 1.0. A software package for pedigree analysis and monitoring genetic diversity. Graduate School of Science and Technology, Niigata University, Niigata, 950-2181, Japan.
  37. Schwartz, M. K., D. A. Tallmon and G. Luikart. 1998. Review of DNA-based census and effective population size estimators. Anim. Conserv. 1:293-299.
  38. Sutter, N. B., M. A. Eberle, H. G. Parker, B. J. Pullar, E. F. Kirkness, L. Kruglyak and E. A. Ostrander. 2004. Extensive and breed-specific linkage disequilibrium in Canis familiaris. Genome Res. 14:2388-2396.
  39. Sved, J. A. 1971. Linkage disequilibrium and homozygosity of chromosome segments in finite populations. Theor. Popul. Biol. 2:125-141.
  40. Tenesa, A., P. Navarro, B. J. Hayes, D. L. Duffy, G. M. Clarke, M. E. Goddard and P. M. Visscher. 2007. Recent human effective population size estimated from linkage disequilibrium. Genome Res. 17:520-526.
  41. Uimari, P. and M. Tapio. 2011. Extent of linkage disequilibrium and effective population size in Finnish Landrace and Finnish Yorkshire pig breeds. J. Anim. Sci. 89:609-614.
  42. Wang, J. 2005. Estimation of effective population sizes from data on genetic markers. Philos. Trans. R. Soc. B. 360:1395-1409.
  43. Weir, B. S. and W. G. Hill. 1980. Effect of mating structure on variation in linkage disequilibrium. Genetics 95:477-488.
  44. Wilcox, B. and C. Walkowicz. 1995. Atlas of Dog Breeds of the World. T. F. H. Publications, Neptune City, NJ, USA.
  45. Wright, S. 1969. Evolution and the genetics of populations: The Theory of Gene Frequencies, Vol. II, University of Chicago Press, Chicago, USA.
  46. Young, C. W. and A. J. Seykora. 1996. Estimates of inbreeding and relationship among registered Holstein females in the Unites States. J. Dairy Sci. 79:502-505.

Cited by

  1. Genome-wide analysis of the diversity and ancestry of Korean dogs vol.12, pp.11, 2017,
  2. A method for detecting recent changes in contemporary effective population size from linkage disequilibrium at linked and unlinked loci vol.117, pp.4, 2016,
  3. Studies of modern Italian dog populations reveal multiple patterns for domestic breed evolution vol.8, pp.5, 2018,


Supported by : Yeungnam University