DOI QR코드

DOI QR Code

Effect of Age and Caponization on Blood Parameters and Bone Development of Male Native Chickens in Taiwan

  • Lin, Cheng-Yung (Taitung Animal Propagation Station, LRI, COA.) ;
  • Hsu, Jenn-Chung (Graduate Institute of Animal Science, National Chung Hsing University) ;
  • Wan, Tien-Chun (Animal Products Processing Division, Livestock Research Institute, Council of Agriculture)
  • Received : 2011.07.06
  • Accepted : 2012.05.05
  • Published : 2012.07.01

Abstract

An experiment was carried out to determine the effect of age and caponization on the development blood and bone characteristics development in male country chickens in Taiwan. A total of two hundred 8-wk-old LRI native chicken cockerels, Taishi meat No.13 from LRI-COA, were used as experimental animals. Cockerels were surgically caponized at 8 wks of age. Twelve birds in each group were bled and dressed from 8 wks to 35 wks of age at 1 to 5 wk intervals. The results indicated that the plasma testosterone concentration was significantly (p<0.05) lower in capons after 12 wks of age (caponized treatment after 4 wks) than that of the intact males. The relative tibia weight, bone breaking strength, cortical thickness, bone ash, bone calcium, bone phosphorus and bone magnesium contents were significantly (p<0.05) higher in intact males, while capons had higher (p<0.05) plasma ionized calcium, inorganic phosphorus and alkaline phosphatase concentration. The plasma testosterone concentration, relative tibia weight, tibia length, breaking strength, cortical thickness, bone ash, calcium, and phosphorus contents of intact males chickens increased significantly (p<0.05) with the advance of age. In addition, the relative tibia weight of capons peaked at 18 wks of age, and declined at 35 wks of age. The bone ash, calcium and phosphorus content increased most after 14 wks of age in male native chickens in Taiwan. Also, tibia length and cortical thickness peaked at 22 wks of age. However, the peak of bone strength was found at 26 wks of age. These findings support the assertion that androgens can directly influence bone composition fluxes in male chickens. Caponization caused a significant increase in bone loss at 4 wks post treatment, which reflected bone cell damage, and demonstrated reductions in the relative tibia weight, breaking strength, cortical thickness, bone ash, calcium, phosphorus and magnesium contents, and increases in plasma ionized calcium, inorganic phosphorus and alkaline phosphatase concentration.

Keywords

Age;Bone Development;Caponization;Male Chicken;Testosterone

Acknowledgement

Supported by : Taiwan Livestock Research Institute (LRI), Council of Agriculture (COA)

References

  1. AOAC. 1984. Official methods of analysis. 13th ed. Washington DC, USA.
  2. Bonjour, J. P., G. Theintz, B. Buchs, D. Slosman and C. T. Jr Roberts. 1991. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J. Clin. Endocrinol. Metab.73:555-563. https://doi.org/10.1210/jcem-73-3-555
  3. Burke, W. H. and H. M. Edwards. 1994. Effect of early castration on body weight, muscle growth, and bone characteristics of male Nicholas strain turkeys. Poult. Sci. 73:457-463. https://doi.org/10.3382/ps.0730457
  4. Chen, K. L., W. T. Chi and P. W. S. Chiou. 2005. Caponization and testosterone implantation effects on blood lipid and lipoprotein profile in male chickens. Poult. Sci. 84:547-552. https://doi.org/10.1093/ps/84.4.547
  5. Chen, K. L., S. M. Tsay, T. Y. Lee and P. W. S. Chiou. 2006a. Effects of caponization and different exogenous androgen on the bone characteristics of male chickens. Poult. Sci. 85:1975-1979. https://doi.org/10.1093/ps/85.11.1975
  6. Chen, K. L., M. H. Chang, S. M. Tsay, H. Y. Huaang and P. W. S. Chiou. 2006b. Effects of caponization on bone characteristics and histological structure in chickens. Asian-Aust. J. Anim. Sci. 19:245-251.
  7. Chen, K. L., S. M. Tsay, D. Y. Lo and P. W. S. Chiou. 2007. Effects of caponization and testosterone on bone and blood parameters of SCWL male chickens. Asian-Aust. J. Anim. Sci. 20:706-710. https://doi.org/10.5713/ajas.2007.706
  8. Crenshaw, T. D. 1986. Reliability of dietary Ca and P levels and bone minerals content as predictors of bone mechanical properties at various time periods in growing swine. J. Nutr. 116:2155-2170.
  9. Crenshaw, T. D., E. R. Peo, Jr. A. J. Lewis and B. D. Moser. 1981. Bone strength as a trait for assessing mineralization in swine: a critical review of techniques involved. J. Anim. Sci. 53:827-835.
  10. Fennel, M. J. and C. G. Scanes. 1992a. Inhibition of growth in chickens by testosterone, $5{\alpha}$-dihydrotesterone, and 19-nortestosterone. Poult. Sci. 71:357-366. https://doi.org/10.3382/ps.0710357
  11. Fennel, M. J. and C. G. Scanes. 1992b. Effect of androgen (testosterone, $5{\alpha}$-dihydrotesterone, and 19-nortestosterone) administration on growth in turkey. Poult. Sci. 71:539-547. https://doi.org/10.3382/ps.0710539
  12. Gilbanz, V., D. T. Gibbens, T. F. Roe, M. Carlson, M. O. Senac, M. I. Boechat, H. K. Huang, E. E. Schulz, C. R. Libanati and C. E. Can. 1988. Vertebral bone density in children: Effect of puberty. Radiology 166:847-850. https://doi.org/10.1148/radiology.166.3.3340782
  13. Gill, R. K., R. T. Turner, T. J. Wronski and N. H. Bell. 1998. Orchiectomy markedly reduces the concentration of the three isoforms of transforming growth factor beta in rat bone, and reduction is prevented by testosterone. Endocrinology 139: 546-550. https://doi.org/10.1210/en.139.2.546
  14. Greendale, G. A., S. Edelstein and E. Barrett-Connor. 1997. Endogenous sex steroids and bone mineral density in older women and men: The rancho bernardo study. J. Bone Miner. Res. 12:1833-1843. https://doi.org/10.1359/jbmr.1997.12.11.1833
  15. Griggs, R. C., W. Kingston, R. F. Jozefowicz, B. E. Herr, G. Forbes and D. Halliday. 1989. Effect of testosterone muscle mass and muscle protein synthesis. J. Appl. Physiol. 66:498-503.
  16. Hegsted, D. M. 1973. In "Modern nutrition in health and disease" (Ed. R. S. Goodhart and M. E. Shils), pp. 268. 5th ed. Lea and Febiger, Philadelphia, Pennsylvania, USA.
  17. Hervey, G. R., A. V. Knibbs, L. Burkinshaw, D. B. Morgan, P. R. M. Jones, D. R. Chettle and D. Vartsky. 1981. Effect of methandienone on the performance and body composition of men undergoing athletic training. Clin. Sci. Lond. 60:457-461.
  18. Hofbauer, L. C., R. M. Ten and S. Khosla. 1999. The anti-androgen hydroxyflutamide and androgens inhibit interleukin-6 production by an androgen-responsive human osteoblastic cell line. J. Bone Miner. Res. 14:1330-1337. https://doi.org/10.1359/jbmr.1999.14.8.1330
  19. Hsieh, T. Y. 2003. Effects of castration in Taiwan country chicken cockerels on growth performance and lipid metabolism. Master Thesis. National Chung-Hsing University, Taichung, Taiwan. (in Chinese)
  20. Hurwitz, S. and P. Griminger, 1961. The response of plasma alkaline phosphatase, parathyroids and blood and bone minerals to calcium intake in the fowl. J. Nutr. 73:177-185.
  21. Hutt, F. B. 1929. Sex dimorphism and variability in the appendicular skeleton of the Leghorn fowl. Poult. Sci. 8:202-218. https://doi.org/10.3382/ps.0080202
  22. Johnson, N. E., B. F. Harland, E. Ross, L. Gautz and M. A. Dunn. 1992. Effects of dietary aluminum and niacin on chick tibiae. Poult. Sci. 71:1188-1195. https://doi.org/10.3382/ps.0711188
  23. Katznelson, L., J. S. Finkelstein, D. A. Schoenfeld, D. I. Rosenthal, E. J. Anderson and A. Klibanski. 1996. Increase in bone density and lean body mass during testosterone administration in men with acquired. J. Clin. Endocrinol. Metab. 81:4359-4365.
  24. Kay, H. D. 1932. Phosphtase in growth and disease in bone. Physiol. Rev. 12:385-389.
  25. Koch, T. and E. Possa. 1973. Anatang of the chicken and domestic birds. p. 12.
  26. Landauer, W. 1937. Studies on the creeper fowl. XI. Castration and length of bones of the appendicular skeleton in normal and creeper fowl. Anat. Rec. 69:247-253. https://doi.org/10.1002/ar.1090690213
  27. Lin, C. C. 1999. Effects of different age of injecting estradiol into Taiwan country chicken on the agonistic behavior, sexual behavior, social status, economic traits and texture properties of breast meat in the later period of growing and the maturate. Master thesis, Department of Animal Science Nation Chung-Hsing University, Taiwan, ROC. (in Chinese)
  28. Lin, C. Y. and J. C. Hsu. 2002. Effects of surgical caponization on growth performance, fiber diameter and some physical properties of muscles in Taiwan country chicken cockerels. Asian-Aust. J. Anim. Sci. 15:401-405. https://doi.org/10.5713/ajas.2002.401
  29. Lin, C. Y. and J. C. Hsu. 2003a. Comparison of some selected growth, physiological and bone characteristics of capon, slip and intact birds in Taiwan country chicken cockerels. Asian-Aust. J. Anim. Sci. 16:50-56. https://doi.org/10.5713/ajas.2003.50
  30. Lin, C. Y. and J. C. Hsu. 2003b. Influence of surgical caponization on the carcass characteristics in Taiwan country chicken cockerels. Asian-Aust. J. Anim. Sci. 16:575-580. https://doi.org/10.5713/ajas.2003.575
  31. Lin, C. Y. and J. C. Hsu. 2008. Study on plasma testosterone concentration, testicles and tibiae development of LRI native chicken cockerels Taishi meat no. 13. J. of Taiwan Livestock Res. 41: 17-26. (in Chinese)
  32. Lin, C. Y., L. C. Lin and J. C. Hsu. 2011. Effect of caponization on muscle composition, shear value, ATP related compounds and taste appraisal in Taiwan country chicken cockerels. Asian-Aust. J. Anim. Sci. 24:1026-1030. https://doi.org/10.5713/ajas.2011.10068
  33. Lin, C. Y. and J. C. Hsu. 2011. Effect of surgical caponization on blood characteristics of male Taiwan country chickens. J. of Taiwan Livestock Res. 44:25-37.
  34. Mashaly, M. M. 1984. Effect of caponization on cell-mediated immunity of immature cockerels. Poult. Sci. 63:369-372. https://doi.org/10.3382/ps.0630369
  35. Matkovic, V., T. Jelic, G. M. Wardlaw, J. Z. Ilich, P. K. Goel, J. K. Wright, M. B. Andon, K. T. Smith and R. P. Heaney. 1994. Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis: Inference from a cross-sectional model. J. Clin. Invest. 93:799-808. https://doi.org/10.1172/JCI117034
  36. Mauras, N., S. Q. Doi and J. R. Shapiro. 1996. Recominant human insulin-like growth factor I, recombinant human growth hormone, and sex steroids: Effects on markers of bone turnover in humans. J. Clin. Endocrinol. Metab. 81:2222-2226. https://doi.org/10.1210/jc.81.6.2222
  37. Mauras, N., V. Y. Hayes, N. E. Vieira, A. L. Yergey and K. O. O'Brien. 1999. Profound hypogonadism has significant negative effects on calcium balance in males: A calcium kinetic study. J. Bone Miner. Res. 14:577-582. https://doi.org/10.1359/jbmr.1999.14.4.577
  38. Moghetti, P., R. Castello, N. Zamberlan, M. Rossini, D. Gatti, C. Negri, F. Tosi, M. Muggeo and S. Adami. 1999. Spironolactone, but not flutamide, administration prevents bone loss in hyperandrogenic women treated with gonadotropin-releasing hormone agonist. J. Clin. Endocrinol. Metab. 84:1250-1254. https://doi.org/10.1210/jc.84.4.1250
  39. Motzok, I. 1950. Studies on the plasma a phosphatase of normal and rachitic chicks. 2. Relationship between plasma phosphatase and the phosphatase of bone, kidney, liver and intestinal mucosa. Biochem. J. 47:193.
  40. Pederson, L., M. Kremer, J. Judd, D. Pascoe, T. C. Spelsberg and B. L. Riggs. 1999. Androgens regulate bone resorption activity of isolated osteoclasts in vitro. Proc. Natl. Acad. Sci. USA 96:505-510. https://doi.org/10.1073/pnas.96.2.505
  41. Peh, H. C. and Y. P. Lee. 1985. The cockerel's serum testosterone and relationships with daily activities, carcass traits and meat qualities. J. Chin. Soc. Anim. Sci. 14: 91-98. (in Chinese)
  42. Puche, R. C. and M. C. Romano. 1968. The effect of dehydroepiandrosterone sulfate and testosterone on the development of chick embryo frontal bones in vitro. Calcif. Tissue Res. 2:133-144. https://doi.org/10.1007/BF02279202
  43. Puche, R. C. and M. C. Romano. 1969. The effect of dehydroepiandrosterone sulfate on the mineral accretion of chick embryo frontal bones cultivated in vitro. Calcif. Tissue Res. 4:39-47. https://doi.org/10.1007/BF02279104
  44. Rico, H., M. Revilla, J. Gonzalez-Riola, L. F. Villa and M. Alvarez de Buergo. 1993. Bone mineral content and antropometric variables in men: A cross-sectional study in 324 normal subjects. Clin. Rheumatol. 12:485-489. https://doi.org/10.1007/BF02231776
  45. Rikimaru, K., M. Yasuda, M. Komastu and J. Ishizuka. 2009. Effects of caponization on growth performance and carcass traits in Hinai-jidori Chickens. Japan Poult. Sci. 46:351-355. https://doi.org/10.2141/jpsa.46.351
  46. SAS. 1988. SAS user guide: Statistics. SAS Inst., Cary, NC, USA.
  47. Sirri, F., M. Bianchi, M. Petracci and A. Meluzzi. 2009. Influence of partial and complete caponization on chicken meat quality. Poult. Sci. 88:1466-1473. https://doi.org/10.3382/ps.2008-00405
  48. Sturike, P. D. 1986. Avian physiology. 4th ed. Springer-Verlag Inc., NY, USA.
  49. Turner, R. T., K. S. Hannon, L. M. Demers, J. Buchanan and N. H. Bell. 1989. The effects of fluoride on bone and implant histomorphometry in growing rats. J. Bone Miner. Res. 4:477-484.
  50. Vanderschueren, D., E. Van Herck, A. M. H. Suiker, W. J. Visser, L. P. C. Schot and R. Bouillon. 1992. Bone and mineral metabolism in aged male rats: short and long term effects of androgen deficiency. Endocrinology 130:2906-2916. https://doi.org/10.1210/en.130.5.2906
  51. Volk, M., J. Malensek, M. Prevolnik, M. Skrlep, B. Segula, M. Candek-Potokar and M. Bavec. 2011. Differences in carcass and meat quality between organically reared cocks and capons. Agric. Conspec. Sci. 76:153-155.
  52. Wakley, G. K., H. D. Schritte, K. S. Hannon and R. T. Turner. 1991. Androgen treatment prevents loss of cancellous bone in the orchiectomized rat. J. Bone Miner. Res. 6:325-330.
  53. Wang, H. T. 2001. Effects of surgical caponization and administration of estradiol to chicken embryos on daily activity, agonistic behavior, growth performance, carcass traits and sensory evaluation of males Taiwan country chickens. Master thesis. Department of Animal Science, National Chung Hsing University, Taiwan. (in Chinese)

Cited by

  1. Long-bone properties and development are affected by caponisation and breed in Polish fowls vol.58, pp.3, 2017, https://doi.org/10.1080/00071668.2017.1280770
  2. Immunocastration as an alternative to caponization: evaluation of its effect on body and bone development and on meat color and composition vol.96, pp.10, 2017, https://doi.org/10.3382/ps/pex191