Phylogeography and Population Genetic Structure of Amur Grayling Thymallus grubii in the Amur Basin

  • Ma, Bo (Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences) ;
  • Lui, Tingting (Guangdong Entomological Institute/South China Institute of Endangered Animals) ;
  • Zhang, Ying (Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences) ;
  • Chen, Jinping (Guangdong Entomological Institute/South China Institute of Endangered Animals)
  • Received : 2011.12.22
  • Accepted : 2012.04.03
  • Published : 2012.07.01


Amur grayling, Thymallus grubii, is an important economic cold freshwater fish originally found in the Amur basin. Currently, suffering from loss of habitat and shrinking population size, T. grubii is restricted to the mountain river branches of the Amur basin. In order to assess the genetic diversity, population genetic structure and infer the evolutionary history within the species, we analysised the whole mitochondrial DNA control region (CR) of 95 individuals from 10 rivers in China, as well as 12 individuals from Ingoda/Onon and Bureya River throughout its distribution area. A total of 64 variable sites were observed and 45 haplotypes were identified excluding sites with gaps/missing data. Phylogenetic analysis was able to confidently predict two subclade topologies well supported by maximum-parsimony and Bayesian methods. However, basal branching patterns cannot be unambiguously estimated. Haplotypes from the mitochondrial clades displayed local homogeneity, implying a strong population structure within T. grubii. Analysis of molecular variance detected significant differences among the different geographical rivers, suggesting that T. grubii in each river should be managed and conserved separately.


Supported by : Ministry of Education, China, Guangdong Bureau of Sciences and Technology, Central Public-interest Scientific Institution Basal Research Fund of China


  1. Antonov, A. L., B. A. Voronov, V. M. Sapayev and E. V. Adnagulov. 1996. Bassein r. Annui - perspektivnaya territoriya visokogo prirodookhrannogo statusa. 3-D Far Eastern Conference Devoted to Reservation, pp. Dalnauka Press, Vladivostock 15-16.
  2. Avise, J. C. 2000. Phylogeography: The History and Formation of Species. Harvard University Press, Cambridge, MA, USA.
  3. Bailey, N. W., D. T. Gwynne and M. G. Ritchie. 2007. Dispersal differences predict population genetic structure in Mormon crickets. Mol. Ecol. 16:2079-2089.
  4. Broccoli, A. J. and S. Manabe. 1992. The effects of orography on midlatitute northern hemisphere dry climates. J. Clim. 5:1181-1201.<1181:TEOOOM>2.0.CO;2
  5. Dybowski, B. N. 1869. Vorlaufige Mittheilungen über die Fischfauna des Ononflusses and des Ingoda in Transbaicalien. Verh. Zool. Bot. Ges. Vien 19:209-222.
  6. Excoffier, L., P. E. Smouse and J. M. Quattro. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: applications to human mitochondrial DNA restriction data. Genetics 131:479-491.
  7. Froufe, E., S. Alekseyev, I. Knizhin, P. Alexandrino and S. Weiss. 2003. Comparative phylogeography of salmonid fishes (Salmonidae) reveals late to post-Pleistocene exchange between three now-disjunct river basins in Siberia. Divers. Distrib. 9:269-282.
  8. Froufe, E., I. Knizhin, M. T. Koskinen, C. R. Primmer and S. Weiss. 2003a. Identification of reproductively isolated lineages of Amur grayling (Thymallus grubii Dybowski 1869): concordance between phenotypic and genetic variation. Mol. Ecol. 12:2345-2355.
  9. Froufe, E., S. Alekseyev, I. Knizhin, P. Alexandrino and S. Weiss. 2003b. Comparative phylogeography of salmonid fishes (Salmonidae) reveals late to post-Pleistocene exchange between three now-disjunct rivers basins in Siberia. Divers. Distrib. 9:269-282.
  10. Fu, Y. X. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915-925.
  11. Garcia-Ramos, G. and M. Kirkpatrick. 1997. Genetic models of adaptation and gene flow in peripheral population. Evolution 51:21-28.
  12. Gonczi, A. P. 2008. A study of physical parameters at the spawning sites of the european grayling (Thymallus thymallus L.). Regulated Ricers: Res. Manage. 3(1):221-224.
  13. Gross, R., R. Kühn, M. Baars, W. Schröder, H. Stein and O. Rottman. 2001. Genetic differentiation of European grayling populations across the Main, Danube and Elbe drainages in Bavaria. J. Fish Biol. 58:264-280.
  14. Grosswald, M. G. 1998. New approach to the ice age paleohydrology of northern Eurasia. In: Paleohydrology and Environmental Change (Ed. G. Benito, V. R. Baker and K. J. Gregory). pp Wiley, Chichester 199-214.
  15. Hewitt, G. 2000. The genetic legacy of the Quaternary ice ages. Nature 405:907-913.
  16. Hewitt, G. M. 1996. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58:247-276.
  17. Hewitt, G. M. 2004. Genetic consequences of climatic oscillations in the Quaternary. Philos. Trans. R. Soc. Biol. Sci. 359:183-195.
  18. Huelsenbeck, J. P. and F. Ronquist. 2001. MrBayes: Bayesian inference of phylogeny. Bioinformatics 17:754-755.
  19. Kamal, M. I., A. N. Richard and G.. M. Hewitt. 1996. Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity 77:282-291.
  20. Kark, S., P. U. Philip, U. N. Safriel and E. Randi. 1999. Conservation priorities for chukar partridge in Israel based on genetic diversity across an ecological gradient. Conserv. Biol. 13:542-552.
  21. Koskinen, M. T., I. Knizhin, C. R. Primmer, C. Schlötterer and S. Weiss. 2002. Mitochondrial and nuclear DNA phylogeography of Thymallus spp. (grayling) provides evidence of ice-age mediated environmental perturbations in the world's oldest body of fresh water, Lake Baikal. Mol. Ecol. 11:2599-2611.
  22. Kumar, S., K. Tamura, I. B. Jakobsen and M. Nei. 2001. Mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244-1245.
  23. Liu Peixin. 1958. Nature and geography in Northeast China. Shanghai, Xinzhi Publishing House 5-15.
  24. McGlashan, D. J.and J. M. Hughes. 2000. Reconciling patterns of genetic variation with stream structure, earth history and biology in the Australian freshwater fish Craterocephalus stercusmuscarum (Atherinidae). Mol. Ecol. 9:1737-1751.
  25. Nei, M. 1986. Molecular evolutionary genetics. Columbia University Press, NY, USA.
  26. Nicolsigy, T. B. (Gao X translated). 1960. Fishes of the Heilongjiang valley, Science Press.
  27. Northcote, T. G. 1995. Comparative biology and management of Arctic and European grayling (Salmonidae, Thymallus). Rev. Fish Biol. Fish. 5:141-194.
  28. Nykanen, M., A. Huusko and A. Maki-Petays. 2005. Seasonal changes in the habitat use and movements of adult European grayling in a large subarctic river. J. Fish Biol. 58:506-519.
  29. Posada, D. and K. A. Crandall. 1998. Modeltest: Testing the model of DNA substitution. Bioinformatics 14:817-818.
  30. Sušnik, S., A. Snoj and P. Dovc. 2001. Evolutionary distinctiveness of grayling (Thymallus thymallus) inhabiting the Adriatic river system, as based on mtDNA variation. Biol. J. Linn. Soc. 74:375-385.
  31. Proctor, M. F., B. N. Mclellan, C. Strobeck and R. M. R. Barclay. 2004. Gender-specific dispersal distances of grizzly bears estimated by genetic analysis. Can. J. Zool. -Revue Canadienne De Zoologie 82:1108-1118.
  32. Ramos-Onsins, S. E. and J. Rozas. 2002. Statistical properties of new neutrality tests against population growth. Mol. Biol. Evol. 19:2092-2100.
  33. Rogers, A. R. 1995. Genetic evidence for a Pleistocene population explosion. Evolution 49:608-615.
  34. Rogers, A. R. and H. C. Harpending. 1992. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9:552-569.
  35. Rozas, J., J. C. Sánchez-DelBarrio, X. Messeguer and R. Rozas. 2003. DNASP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496-2497.
  36. Schneider, S., D. Roessli and L. Excoffier. 2000. Arlequin, Version 2.Genetics and Biometry Laboratory, Department of Anthropology,University of Geneva, Geneva.
  37. Swofford, D. L. 2001. PAUP ver 4.0.b3a. Phylogenetic Analysis Using Parsimony and Other Methods. Sunderland, MA:Sinauer Associates.
  38. Taggart, J. B., R. Hynes, P. A. Prodohl and A. Ferguson. 1992. A simplified protocol for routine total DNA isolation from Salmonid fishes. J. Fish Biol. 40:963-965.
  39. Uiblein, F., A. Jagsch and W. Honsig-Erlenburg. 2001. Status, habitat use, and vulnerability of the European grayling in Austrian water. J. Fish Biol. 59:223-247.
  40. Weiss, S., I. Knizhin, A. Kirillov and E. Froufe. 2006. Phenotypic and genetic differentiation of two major phylogeographical lineages of arctic grayling Thymallus arcticus in the Lena River, and surrounding Arctic drainages. Biol. J. Linn. Soc. 88: 511-525.

Cited by

  1. Genetic analysis of population differentiation and adaptation in Leuciscus waleckii vol.141, pp.10-12, 2013,
  2. Dybowski, 1869) in the Amur River vol.29, pp.3, 2013,
  3. from different geographic populations inferred from mtDNA control region vol.25, pp.5, 2014,