Seismic Performance Evaluation of Staggered Wall Structures Using FEMA P695

FEMA P695를 이용한 격간벽 구조의 내진성능평가

  • Received : 2012.03.12
  • Accepted : 2012.05.29
  • Published : 2012.06.30


The FEMA P695 document proposed a methodology to evaluate the collapse safety of a structure and the validity of the seismic design coefficients. In this study, the seismic performance of six- and twelve-story staggered wall structures with a middle corridor was evaluated based on the FEMA P695 procedure. The analysis results of the prototype structures were compared with those of the structures with an increased coupling beam depth or an increased re-bar ratio of the coupling beams in order to investigate the effect of retrofit. The adjusted collapse margin ratios (ACMR) of the model structures obtained from incremental dynamic analyses turned out to be larger than the specified limit states of an ACMR of 20%, which implies that the analysis model structures have enough strength against design level earthquakes. It was also observed that the increase in the re-bar ratio of the coupling beams between the staggered walls was more effective in increasing the ACMR than an increase in the depth of the coupling beams.


Supported by : 한국연구재단


  1. 건설교통부, 공동죽택 바닥충격음 차단구조인정 및 관리기준, 2005.
  2. 건설교통부, 주택성능등급표시제, 2006.
  3. 이준호, 전용, 김진구, "판상형 격간벽시스템의 반응수정계수," 대한건축학회논문집, 제27권, 제7호, 77-85, 2011.
  4. 강현구, 이준호, 김진구, "중복도 격간벽 구조시스템의 내진성능평가," 대한건축학회논문집, 제27권, 제9호, 77-84, 2011.
  5. KBC-2009, 건축구조설계기준, 대한건축학회, 2009.
  6. AISC, "Steel Design Guide 14 : Staggered Truss Framing System," American Institute of Steel Construction, Chicago, 2002.
  7. FEMA P695, Quantification of Building Seismic Performance Factors, Federal Emergency Management Agency, Washington, D. C., 2009.
  8. ASCE, Seismic Rehabilitation of Existing Buildings, ASCE Standard ASCE/SEI 41-06, American Society of Civil Engineers, Reston Virginia., 2007.
  9. ATC, Structural response modification factors, ATC-19, Applied Technology Council, Redwood City, California, 5-32, 1995.
  10. ATC, A critical review of curent approaches to earthquakeresistant design, ATC-34, Applied Technology Council, Redwood City, California, 31-6, 1995.
  11. PEER, PEER NGA Database, Pacific Earthquake Engineering Research Center, University of California, Berkeley, U.S.A.,, 2006.
  12. Vamvatsikos, D., and Cornell, C.A., "Incremental Dynamic Analysis," Earthquake Engineering and Structural Dynamics, Vol. 31, Issue 3, pp. 491-514., 2002.
  13. Computer and Structures, Inc., PERFORM Components and Elements for PERFORM 3D and PERFORM-Collapse ver.4, CSI, Berkerley, CA., 2006.
  14. Paulay and Priestley, "Seismic Design of Reinforced Concrete and Masonry Building," John Wiley & Sons, Inc., 1992.
  15. Paulay and Priestley, "Seismic Design of Reinforced Concrete and Masonry Building," John Wiley & Sons, Inc., 1992.
  16. Ellingwood, B. R., Celik, O. C., and Kinali, K., "Fragility assessment of building structural systems in Mid-America." Earthquake Eng. Struct. Dyn., Vol.36, No.13, 1935-1952., 2007.

Cited by

  1. Collapse Probability of a Low-rise Piloti-type Building Considering Domestic Seismic Hazard vol.20, pp.7 Special, 2016,