DOI QR코드

DOI QR Code

Anti-inflammatory effects of a methanol extract from Pulsatilla koreana in lipopolysaccharide-exposed rats

  • Lee, Sang-Hyun (Department of Pharmaceutical Engineering, Sangji University) ;
  • Lee, Eun (Department of Pharmaceutical Engineering, Sangji University) ;
  • Ko, Young-Tag (College of Pharmacy, Gachon University)
  • Received : 2012.01.19
  • Accepted : 2012.04.13
  • Published : 2012.06.30

Abstract

To investigate the therapeutic effect of a Korean herbal medicine Pulsatilla koreana as an anti-septic agent, anti-inflammatory effects of the herbal medicine were determined in lipopolysaccharide (LPS)-exposed rats. Treatment with a methanol extract from Pulsatilla koreana significantly inhibited LPS-induced inflammatory responses. Results from ELISA analysis showed that Pulsatilla koreana decreased the plasma and hepatic levels of pro-inflammatory cytokines such as IL-$1{\beta}$, IL-6, TNF-${\alpha}$ while increased the level of anti-inflammatory cytokine IL-10 in LPS-exposed rats. Pulsatilla koreana also decreased the plasma levels of other inflammatory mediators such as $NO_3{^-}/NO_2{^-}$, ICAM-1, $PGE_2$, and CINC-1 in LPS-exposed rats. Although no significant effects were observed in the phagocytic activities, the distribution of lymphocyte population was significantly shifted by the treatment with Pulsatilla koreana. All together, Pulsatilla koreana exerts anti-inflammatory activities in the immune-challenged animals implicating that this Korean herbal medicine is therapeutically useful for the treatment of inflammatory diseases like sepsis.

Acknowledgement

Supported by : Sangji University

References

  1. Chao, C. Y., Yeh, S. L., Lin, M. T. and Chen, W. J. (2000) Effects of parenteral infusion with fish-oil or safflower-oil emulsion on hepatic lipids, plasma amino acids, and inflammatory mediators in septic rats. Nutrition 16, 284-288. https://doi.org/10.1016/S0899-9007(99)00299-3
  2. Hudson, L. D., Milberg, J. A., Anardi, D. and Maunder, R. J. (1995) Clinical risks for development of the acute respiratory distress syndrome. Am. J. Respir. Crit. Care. Med. 151, 293-301. https://doi.org/10.1164/ajrccm.151.2.7842182
  3. Gabay, C. and Kushner, I. (1999) Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 340, 448-454. https://doi.org/10.1056/NEJM199902113400607
  4. Belvisi, M. G., Brown, T. J., Wicks, S. and Foster, M. L. (2001) New Glucocorticosteroids with an improved therapeutic ratio. Pulm. Pharmacol. Ther. 14, 221-227. https://doi.org/10.1006/pupt.2001.0284
  5. Lo, Y. C., Lin, Y. L., Yu, K. L., Lai, Y. H., Wu, Y. C., Ann, L. M. and Chen, I. J. (2005) San-Huang-Xie-Xin-Tang attenuates inflammatory responses in lipopolysaccharide- exposed rat lungs. J. Ethnopharmacol. 101, 68-74. https://doi.org/10.1016/j.jep.2005.03.015
  6. Park, E. K., Ryu, M. H., Kim, Y. H., Lee, Y. A., Lee, S. H., Woo, D. H., Hong, S. J., Han, J. S., Yoo, M. C., Yang, H. I. and Kim, K. S. (2006) Anti-inflammatory effects of an ethanolic extract from Clematis mandshurica Rupr. J. Ethnopharmacol. 108, 142-147. https://doi.org/10.1016/j.jep.2006.04.025
  7. Kaur, G., Hamid, H., Ali, A., Alam, M. S. and Athar, M. (2004) Antiinflammatory evaluation of alcoholic extract of galls of Quercus infectoria. J. Ethnopharmacol. 90, 285-292. https://doi.org/10.1016/j.jep.2003.10.009
  8. Kang, S. S. (1989) Saponins from the roots of Pulsatilla koreana. Arch. Pharm. Res. 12, 42-47. https://doi.org/10.1007/BF02855745
  9. Bang, S. C., Kim, Y., Lee, J. H. and Ahn, B. Z. (2005) Triterpenoid saponins from the roots of Pulsatilla koreana. J. Nat. Prod. 68, 268-272. https://doi.org/10.1021/np049813h
  10. Yang, H., Cho, Y. W., Kim, S. H., Kim, Y. C. and Sung, S. H. Triterpenoidal saponins of Pulsatilla koreana roots. Phytochemistry 71, 1892-1899.
  11. Mathiak, G., Grass, G., Herzmann, T., Luebke, T., Zetina, C. C., Boehm, S. A., Bohlen, H., Neville, L. F. and Hoelscher, A. H. (2000) Caspase-1-inhibitor ac-YVAD-cmk reduces LPS-lethality in rats without affecting haematology or cytokine responses. Br. J. Pharmacol. 131, 383-386. https://doi.org/10.1038/sj.bjp.0703629
  12. Barton, C. C., Barton, E. X., Ganey, P. E., Kunkel, S. L. and Roth, R. A. (2001) Bacterial lipopolysaccharide enhances aflatoxin B1 hepatotoxicity in rats by a mechanism that depends on tumor necrosis factor alpha. Hepatology 33, 66-73. https://doi.org/10.1053/jhep.2001.20643
  13. Luster, M. I., Germolec, D. R., Yoshida, T., Kayama, F. and Thompson, M. (1994) Endotoxin-induced cytokine gene expression and excretion in the liver. Hepatology 19, 480-488. https://doi.org/10.1002/hep.1840190229
  14. Aono, K., Isobe, K., Kiuchi, K., Fan, Z. H., Ito, M., Takeuchi, A., Miyachi, M., Nakashima, I. and Nimura, Y. (1997) In vitro and in vivo expression of inducible nitric oxide synthase during experimental endotoxemia: involvement of other cytokines. J. Cell. Biochem. 65, 349-358. https://doi.org/10.1002/(SICI)1097-4644(19970601)65:3<349::AID-JCB5>3.0.CO;2-S
  15. Ayala, A., Deol, Z. K., Lehman, D. L., Herdon, C. D. and Chaudry, I. H. (1994) Polymicrobial sepsis but not low-dose endotoxin infusion causes decreased splenocyte IL-2/IFN-gamma release while increasing IL-4/IL-10 production. J. Surg. Res. 56, 579-585. https://doi.org/10.1006/jsre.1994.1092
  16. Tracey, K. J., Fong, Y., Hesse, D. G., Manogue, K. R., Lee, A. T., Kuo, G. C., Lowry, S. F. and Cerami, A. (1987) Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature 330, 662-664. https://doi.org/10.1038/330662a0
  17. Ohlsson, K., Bjork, P., Bergenfeldt, M., Hageman, R. and Thompson, R. C. (1990) Interleukin-1 receptor antagonist reduces mortality from endotoxin shock. Nature 348, 550-552. https://doi.org/10.1038/348550a0
  18. Chamulitrat, W., Blazka, M. E., Jordan, S. J., Luster, M. I. and Mason, R. P. (1995) Tumor necrosis factor-alpha and nitric oxide production in endotoxin-primed rats administered carbon tetrachloride. Life Sci. 57, 2273-2280. https://doi.org/10.1016/0024-3205(95)02220-D
  19. Harbrecht, B. G., Di Silvio, M., Demetris, A. J., Simmons, R. L. and Billiar, T. R. (1994) Tumor necrosis factor-alpha regulates in vivo nitric oxide synthesis and induces liver injury during endotoxemia. Hepatology 20, 1055-1060. https://doi.org/10.1002/hep.1840200439
  20. Hamada, E., Nishida, T., Uchiyama, Y., Nakamura, J., Isahara, K., Kazuo, H., Huang, T. P., Momoi, T., Ito, T. and Matsuda, H. (1999) Activation of Kupffer cells and caspase-3 involved in rat hepatocyte apoptosis induced by endotoxin. J. Hepatol. 30, 807-818. https://doi.org/10.1016/S0168-8278(99)80133-0
  21. Marriott, J. B., Westby, M., Cookson, S., Guckian, M., Goodbourn, S., Muller, G., Shire, M. G., Stirling, D. and Dalgleish, A. G. (1998) CC-3052: a water-soluble analog of thalidomide and potent inhibitor of activation-induced TNF-alpha production. J. Immunol. 161, 4236-4243.
  22. Thompson, K. C., Trowern, A., Fowell, A., Marathe, M., Haycock, C., Arthur, M. J. and Sheron, N. (1998) Primary rat and mouse hepatic stellate cells express the macrophage inhibitor cytokine interleukin-10 during the course of activation In vitro. Hepatology 28, 1518-1524. https://doi.org/10.1002/hep.510280611
  23. Sang, H., Wallis, G. L., Stewart, C. A. and Kotake, Y. (1999) Expression of cytokines and activation of transcription factors in lipopolysaccharide-administered rats and their inhibition by phenyl N-tert-butylnitrone (PBN). Arch. Biochem. Biophys. 363, 341-348. https://doi.org/10.1006/abbi.1998.1086
  24. Moreira, A. L., Sampaio, E. P., Zmuidzinas, A., Frindt, P., Smith, K. A. and Kaplan, G. (1993) Thalidomide exerts its inhibitory action on tumor necrosis factor alpha by enhancing mRNA degradation. J. Exp. Med. 177, 1675-1680. https://doi.org/10.1084/jem.177.6.1675
  25. Lennard, T. W., Shenton, B. K., Borzotta, A., Donnelly, P. K., White, M., Gerrie, L. M., Proud, G. and Taylor, R. M. (1985) The influence of surgical operations on components of the human immune system. Br. J. Surg. 72, 771-776. https://doi.org/10.1002/bjs.1800721002
  26. Schauder, P., Rohn, U., Schafer, G., Korff, G. and Schenk, H. D. (2002) Impact of fish oil enriched total parenteral nutrition on DNA synthesis, cytokine release and receptor expression by lymphocytes in the postoperative period. Br. J. Nutr. 87(Suppl 1), S103-110. https://doi.org/10.1079/BJN2001463
  27. Tsou, S. S., Chiu, W. C., Yeh, C. L., Hou, Y. C. and Yeh, S. L. (2008) Effects of omega-3 fatty acids on inflammatory mediators and splenocyte cytokine mRNA expressions in rats with polymicrobial sepsis. Nutrition 24, 484-491. https://doi.org/10.1016/j.nut.2008.01.012
  28. Moncada, S., Palmer, R. M. and Higgs, E. A. (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43, 109-142.
  29. Hogg, N. (1998) Free radicals in disease. Semin. Reprod. Endocrinol. 16, 241-248. https://doi.org/10.1055/s-2007-1016284
  30. Harris, S. G., Padilla, J., Koumas, L., Ray, D. and Phipps, R. P. (2002) Prostaglandins as modulators of immunity. Trends. Immunol. 23, 144-150. https://doi.org/10.1016/S1471-4906(01)02154-8
  31. Weber, C. (2003) Novel mechanistic concepts for the control of leukocyte transmigration: specialization of integrins, chemokines, and junctional molecules. J. Mol. Med. (Berl). 81, 4-19. https://doi.org/10.1007/s00109-002-0391-x
  32. Bressan, E., Cunha Fde, Q. and Tonussi, C. R. (2006) Contribution of TNFalpha, IL-1beta and CINC-1 for articular incapacitation, edema and cell migration in a model of LPS-induced reactive arthritis. Cytokine 36, 83-89. https://doi.org/10.1016/j.cyto.2006.11.007
  33. Bohmer, R. H., Trinkle, L. S. and Staneck, J. L. (1992) Dose effects of LPS on neutrophils in a whole blood flow cytometric assay of phagocytosis and oxidative burst. Cytometry 13, 525-531. https://doi.org/10.1002/cyto.990130512

Cited by

  1. Effects of (20S*,24R*)-epoxy-9,19-cyclolanstane-3β,12β,16β,25-pentaol-3-O-β-d-xylopyranoside Extracted from Rhizoma Beesia on Immunoregulation and Anti-inflammation vol.37, pp.1, 2014, https://doi.org/10.1007/s10753-013-9738-4
  2. Molecular mechanisms of luteolin-7-O-glucoside-induced growth inhibition on human liver cancer cells: G2/M cell cycle arrest and caspase-independent apoptotic signaling pathways vol.46, pp.12, 2013, https://doi.org/10.5483/BMBRep.2013.46.12.133
  3. Effects of taurocholic acid on immunoregulation in mice vol.15, pp.2, 2013, https://doi.org/10.1016/j.intimp.2012.12.006
  4. Intestinal anti-inflammatory activity of the seeds of Raphanus sativus L. in experimental ulcerative colitis models vol.179, 2016, https://doi.org/10.1016/j.jep.2015.12.045
  5. Anemonin improves intestinal barrier restoration and influences TGF-β1 and EGFR signaling pathways in LPS-challenged piglets vol.22, pp.5, 2016, https://doi.org/10.1177/1753425916648223
  6. Models of drug-induced liver injury for evaluation of phytotherapeutics and other natural products vol.55, 2013, https://doi.org/10.1016/j.fct.2012.12.063
  7. Renoprotective effect of Pulsatillae Radix on cisplatin-induced nephrotoxicity in mice vol.9, pp.4, 2013, https://doi.org/10.1007/s13273-013-0048-6
  8. Genomic Resources of Three Pulsatilla Species Reveal Evolutionary Hotspots, Species-Specific Sites and Variable Plastid Structure in the Family Ranunculaceae vol.16, pp.9, 2015, https://doi.org/10.3390/ijms160922258
  9. Systems Pharmacological Approach of Pulsatillae Radix on Treating Crohn’s Disease vol.2017, 2017, https://doi.org/10.1155/2017/4198035
  10. Effects of Trifoliate Orange (Poncirus trifoliata) Extract on Inflammatory Responses in LPS-induced Shock Rats and RAW 264.7 Cells vol.29, pp.3, 2016, https://doi.org/10.7732/kjpr.2016.29.3.305
  11. Anti-inflammatory and antioxidant effects of umbelliferone in chronic alcohol-fed rats vol.9, pp.4, 2015, https://doi.org/10.4162/nrp.2015.9.4.364
  12. IKKβ-Targeted Anti-Inflammatory Activities of a Butanol Fraction of Artificially CultivatedCordyceps pruinosaFruit Bodies vol.2014, 2014, https://doi.org/10.1155/2014/562467