DOI QR코드

DOI QR Code

COMMUTING POWERS AND EXTERIOR DEGREE OF FINITE GROUPS

  • Niroomand, Peyman ;
  • Rezaei, Rashid ;
  • Russo, Francesco G.
  • Received : 2011.06.19
  • Published : 2012.07.01

Abstract

Recently, we have introduced a group invariant, which is related to the number of elements $x$ and $y$ of a finite group $G$ such that $x{\wedge}y=1_{G{\wedge}G}$ in the exterior square $G{\wedge}G$ of $G$. This number gives restrictions on the Schur multiplier of $G$ and, consequently, large classes of groups can be described. In the present paper we generalize the previous investigations on the topic, focusing on the number of elements of the form $h^m{\wedge}k$ of $H{\wedge}K$ such that $h^m{\wedge}k=1_{H{\wedge}K}$, where $m{\geq}1$ and $H$ and $K$ are arbitrary subgroups of $G$.

Keywords

m-th relative exterior degree;commutativity degree;exterior product;Schur multiplier;homological algebra

References

  1. F. R. Beyl, U. Felgner, and P. Schmid, On groups occurring as center factor groups, J. Algebra 61 (1979), no. 1, 161-177. https://doi.org/10.1016/0021-8693(79)90311-9
  2. R. Brown, D. L. Johnson, and E. F. Robertson, Some computations of nonabelian tensor products of groups, J. Algebra 111 (1987), no. 1, 177-202. https://doi.org/10.1016/0021-8693(87)90248-1
  3. R. Brown and J.-L. Loday, Van Kampen theorems for diagrams of spaces, Topology 26 (1987), no. 3, 311-335. https://doi.org/10.1016/0040-9383(87)90004-8
  4. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups, Oxford University Press, Oxford, 1985.
  5. A. K. Das and R. K. Nath, On the generalized relative commutative degree of a finite group, Int. Electr. J. Algebra 7 (2010), 140-151.
  6. G. Ellis, The Schur multiplier of a pair of groups, Appl. Categ. Structures 6 (1998), no. 3, 355-371. https://doi.org/10.1023/A:1008652316165
  7. A. Erfanian, P. Lescot, and R. Rezaei, On the relative commutativity degree of a subgroup of a finite group, Comm. Algebra 35 (2007), no. 12, 4183-4197. https://doi.org/10.1080/00927870701545044
  8. P. Lescot, Isoclinism classes and commutativity degrees of finite groups, J. Algebra 177 (1995), no. 3, 847-869. https://doi.org/10.1006/jabr.1995.1331
  9. P. Lescot, Central extensions and commutativity degree, Comm. Algebra 29 (2001), no. 10, 4451-4460. https://doi.org/10.1081/AGB-100106768
  10. P. Niroomand and R. Rezaei, On the exterior degree of finite groups, Comm. Algebra 39 (2011), no. 1, 335-343.
  11. P. Niroomand and R. Rezaei, The exterior degree of a pair of finite groups, E-print, Cornell University Library, arXiv:1101.4312v1, 2011.
  12. P. Niroomand and F. G. Russo, A note on the exterior centralizer, Arch. Math. (Basel) 93 (2009), no. 6, 505-512. https://doi.org/10.1007/s00013-009-0077-5

Cited by

  1. Probabilistic properties of the relative tensor degree of finite groups vol.27, pp.1, 2016, https://doi.org/10.1016/j.indag.2015.09.002
  2. Strong subgroup commutativity degree and some recent problems on the commuting probabilities of elements and subgroups vol.39, pp.8, 2016, https://doi.org/10.2989/16073606.2016.1247118
  3. The Influence of the Complete Nonexterior Square Graph on some Infinite Groups vol.56, pp.4, 2016, https://doi.org/10.1007/s10986-016-9331-2
  4. THE PROBABILITY THAT AND COMMUTE IN A COMPACT GROUP vol.87, pp.03, 2013, https://doi.org/10.1017/S0004972712000573
  5. Problems of Connectivity between the Sylow Graph,the Prime Graph and the Non-Commuting Graph of a Group vol.02, pp.06, 2012, https://doi.org/10.4236/apm.2012.26058