Enantioselective Hydrolysis for Preparing (S)-Styrene Oxide in Organic Solvents Using Recombinant Escherichia coli Expressing Protein-engineered Epoxide Hydrolase of Mugil cephalus

Mugil cephalus 유래 에폭사이드 가수분해효소를 발현하는 재조합 대장균을 이용한 유기용매에서의 (S)-Styrene Oxide 제조를 위한 입체선택적 가수분해 반응

  • Lee, Ok Kyung (Department of Chemical Engineering, Kyung Hee University) ;
  • Lee, Eun Yeol (Department of Chemical Engineering, Kyung Hee University)
  • 이옥경 (경희대학교 화학공학과) ;
  • 이은열 (경희대학교 화학공학과)
  • Published : 2012.12.10

Abstract

The enantioselective hydrolysis of racemic styrene oxide in organic solvents was conducted using a recombinant E. coli expressing protein-engineered Mugil cephalus epoxide hydrolase (McEH). The volumetric total activity of the recombinant E. coli was enhanced 2.2-fold by IPTG induction at a mid-exponential growth phase. Among organic solvents with different log P values, isooctane was chosen based on the high activity and the enantioselectivity of McEH. Some lyoprotectants such as skim milk or sucrose enhanced the McEH activity. Enantiopure (S)-Styrene oxide with a 98% ee was obtained from the racemic styrene oxide with a 53.6% yield based on its theoretical yield in isooctane.

Keywords

enantioselective hydrolysis;epoxide hydrolase;Mugil cephalus;organic solvent;protein-engineered epoxide hydrolase

References

  1. J. G. Smith, Synthesis, 8, 629 (1984).
  2. P. Besse and H. Veschambre, Tetrahedron, 50, 8885 (1994). https://doi.org/10.1016/S0040-4020(01)85362-X
  3. K. M. Manoj, A. Archelas, J. Barati, and R. Furstos, Tetrahedron, 57, 695 (2001). https://doi.org/10.1016/S0040-4020(00)01032-2
  4. A. Archelas and R. Furstoss, Curr. Opin. Chem. Biol., 5, 112 (2001). https://doi.org/10.1016/S1367-5931(00)00179-4
  5. E. J. de Vries and D. B. Janssen, Curr. Opin. Biotechnol., 14, 414 (2003). https://doi.org/10.1016/S0958-1669(03)00102-2
  6. W. J. Choi, E. Y. Lee, S. J. Yoon, and C. Y. Choi. J. Biosci. Bioeng., 88, 339 (1999). https://doi.org/10.1016/S1389-1723(00)80022-5
  7. P. F. Gong, and J. H. Xu, Enzyme. Microb. Technol., 36, 252 (2005). https://doi.org/10.1016/j.enzmictec.2004.07.014
  8. E. Y. Lee, J. Ind. Eng. Chem., 13, 159 (2007).
  9. S. Karboune, A. Archelas, and J. Baratti, Enzym. Microb. Technol., 39, 318 (2006). https://doi.org/10.1016/j.enzmictec.2005.11.002
  10. S. J. Lee, H. S. Kim, S. J. Kim, S. Park, B. J. Kim, M. L. Shuler, and E. Y. Lee, Biotechnol. Lett., 29, 237 (2007). https://doi.org/10.1007/s10529-006-9222-4
  11. S. H. Choi, H. S. Kim, and E. Y. Lee, Biotechnol. Lett., 31, 1617 (2009). https://doi.org/10.1007/s10529-009-0055-9
  12. S. H. Choi, H. S. Kim, and E. Y. Lee, J. Ind. Eng. Chem., 18, 72 (2012). https://doi.org/10.1016/j.jiec.2011.11.085
  13. K. S. Lee, M. H. Woo, H. S. Kim, E. Y. Lee, and I. S. Lee, Chem. Commun., 25, 3780 (2009).
  14. S. H. Choi, H. S. Kim, I. S. Lee, and E. Y. Lee, Biotechnol. Lett., 32, 1685 (2010). https://doi.org/10.1007/s10529-010-0335-4
  15. P. L. A. Overbeeke, J. Ottosson, K. Hult, J. A. Jongejan, and J. A. Duine, Biocatal. Biotrans., 17, 61 (1999). https://doi.org/10.3109/10242429909003207
  16. M. H. Woo, H. S. Kim, and E. Y. Lee, J. Ind. Eng. Chem., 18, 384 (2012). https://doi.org/10.1016/j.jiec.2011.11.110