Freeze Treatment of Sludge for the Biogas Production from Brown Macroalgae

슬러지 냉동처리에 의한 갈조류로부터 바이오가스 생산

  • Kim, Ji-Youn (Department of Bioscience and Biotechnology, College of Medical and Life Science, Silla University) ;
  • Jeong, Haeng Soon (Department of Bioscience and Biotechnology, College of Medical and Life Science, Silla University) ;
  • Woo, Dae-Sik (Department of Bioscience and Biotechnology, College of Medical and Life Science, Silla University) ;
  • Kim, Sang-Min (Department of Environmental Engineering, Korea Maritime University) ;
  • Kim, In Soo (Department of Environmental Engineering, Korea Maritime University) ;
  • Lee, Jae-Hwa (Department of Bioscience and Biotechnology, College of Medical and Life Science, Silla University)
  • 김지윤 (신라대학교 의생명과학대 생명공학과) ;
  • 정행순 (신라대학교 의생명과학대 생명공학과) ;
  • 우대식 (신라대학교 의생명과학대 생명공학과) ;
  • 김상민 (한국 해양대학교 환경공학과) ;
  • 김인수 (한국 해양대학교 환경공학과) ;
  • 이재화 (신라대학교 의생명과학대 생명공학과)
  • Published : 2012.12.10

Abstract

In the present study, biogas was produced from the anaerobic digestion of marine macroalgae (Laminaria japonica) biomass. The optimal anaerobic condition for producing the sludge was the freeze treatment at $-70^{\circ}C$ for 20 min. Total amounts of hydrogen and methane gas produced were 667.28 mL/L and 3420.24 mL/L, respectively, which were 2.7 and 3.4 times greater than that in the control group. Freeze treatment of sludge produced the maximum biogas under an initial optimum pH of 7.0 and the maximum biomass at an initial optimum pH of 8.0. We confirmed that biogas production was greatly reduced under acidic conditions compared to that under alkaline conditions. Sludge was freeze treated, and the biomass and sludge production was optimal the total amounts of hydrogen and methane gas produced were 643.73 mL/L and 4291.6 mL/L, respectively, which were 2.6 and 4.3 times greater than in the control group. Also the results showed that under optimal conditions in a 5-L bioreactor, a maximum of 1605.03 mL/L of hydrogen and 4593.71 mL/L of methane gas could be produced by the substrate contained in the marine macroalgae biomass.

Keywords

marine macroalgae;anaerobic digestion;hydrogen;methane;freeze treatment

References

  1. G. Berndes, M. Hoogwijk, and R. Broek, Biomass Bioenerg., 25, 1 (2003). https://doi.org/10.1016/S0961-9534(02)00185-X
  2. J. -I. Park, J. W. Lee, S. J. Sim, and J. -H. Lee, Biotechnology and Engineering, 14, 307 (2009).
  3. J. H. Yoo, E. S. Seong, J. G. Lee, N. J Kim, I. S. Hwang, H. Y. Kim, B. K. Ghimire, J. D. Lim, K. Heo, and C. Y. Yu, J. Kor. J. Breed. Sci., 44, 121 (2012).
  4. S.-J. Choi, S.-M. Lee, and J.-H. Lee, Appl. Chem. Eng., 23, 279 (2012).
  5. I. M. Dincer and Rosen, Appl. Energy., 64, 231 (1999).
  6. C. E. Wyman and B. J. Goodman, Appl. Biochem. and Biotechnol., 39, 41 (1933).
  7. J.-I. Park, H.-C. Woo, and J.-H. Lee, Korean Chem. Eng. Res., 46, 833 (2008).
  8. J. M. Kim, Y. H. Lee, S. H. Jung, J. T. Lee, and M. H. Cho, Clean Tech., 16, 51 (2010).
  9. B. Xiao and J. Liu, J. Hazard. Mater., 168, 163 (2009). https://doi.org/10.1016/j.jhazmat.2009.02.008
  10. W.-S. Lee, M.-J. Lee, and K.-S. Min, Journal of Korean Society on Water Environment., 778 (2006).
  11. H. J. Kang, H. S. Kim, K. S. Han, Y. J. Choi, T. J. Lee, Y. H. Lee, and H. D. Park, Korean Society on Water Environment, 63 (2011).
  12. D.-J. Kim and H.-Y. Kim, Korean Chem. Eng. Res., 48, 103 (2010).
  13. J.-H. Lee, D. G. Lee, J.-L. Park, and J.-Y. Kim, J. Korean Ind. Eng. Chem., 27, 187 (2010). https://doi.org/10.1007/s11814-009-0300-x
  14. M.-H. Kim, S.-K. Cho, and S.-E. Oh, Journal of Korean Society of Urban Environment., 11, 161 (2011).
  15. J. J. Lay, K. S. Fan, and J. C. Chang, Int. J. Hydrogen Energy, 28, 1361 (2003). https://doi.org/10.1016/S0360-3199(03)00027-2
  16. S.-E. Oh, S. V. Ginkel, and B. E. Logan, Environ. Sci. Tech., 37, 5186 (2003). https://doi.org/10.1021/es034291y
  17. C. K. Na and M. K. Song, Korean Chem. Eng. Res., 50, 141 (2012). https://doi.org/10.9713/kcer.2012.50.1.141
  18. Y. Y. Li and T. Noike, Water Sci. Technol, 8, 209 (1997).
  19. S. S. Choi, H. M. Lee, T.-Y. Jeong, and S. H. Yeom, Appl. Chem. Eng., 23, 228 (2012).
  20. H. S. Park and J. H, Kim, Korean Society of Civil Engineers, 9, 411 (2003).