Effect of Tungsten on PtRuW/C Catalysts for Promoting Methanol Electro-oxidation

메탄올 전기산화반응 증진을 위한 PtRuW/C 촉매에서 텅스텐의 효과에 관한 연구

  • Published : 2012.12.10

Abstract

PtRuW/C catalysts were prepared with the different molar ratios of Pt : Ru : W and their compositions were analyzed by energy dispersive X-ray (EDX). The uniform distribution of particles was observed using transmission electron microscopy (TEM). An average crystalline size of 3.5~5.5 nm was calculated based on x-ray diffraction (XRD) data. The electrochemical properties such as electrochemically active surface areas, current densities, specific activities and poisoning rates, were analyzed via CO stripping, linear sweep voltammetry and chronoamperometry. From the analysis, we observed that ternary alloy catalysts, except $PtRu_2W_2/C$, have higher current densities, specific activities and stabilities than those of commercial binary catalysts. Among all in-house catalysts, Pt5Ru4W/C showed the highest specific activity of $121.05mA{\cdot}m^{-2}$ and the lowest poisoning rate of $0.01%{\cdot}s^{-1}$.

Keywords

methanol electro-oxidation;ternary catalyst;PtRuW;tungsten effect;direct methanol fuel cell

References

  1. M. A. J. Cropper, S. Geiger, and D. M. Jollie, J. Power Sources, 131, 57 (2004). https://doi.org/10.1016/j.jpowsour.2003.11.080
  2. D. Ilic, K. Holl, P. Birke, T. Wohrle, F. Birke-Salam, A. Perner, and P. Haug, J. Power Sources, 155, 72 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.100
  3. H. Nitani, T. Nakagawa, H. Daimon, Y. Kurobe, T. Ono, Y. Honda, A. Koizumi, S. Seino, and T. A. Yamamoto, Appl. Catal. A, 326, 194 (2007). https://doi.org/10.1016/j.apcata.2007.04.018
  4. V. Neburchilov, H. Wang, and J. Zhang, Electrochem. Commun., 9, 1788 (2007). https://doi.org/10.1016/j.elecom.2007.04.001
  5. Y. Morimoto and E. B. Yeager, J. Electroanal. Chem., 444, 95 (1998). https://doi.org/10.1016/S0022-0728(97)00563-9
  6. D. F. A. Koch, D. A. J. Rand, and R. Woods, J. Electroanal. Chem., 70, 73 (1976). https://doi.org/10.1016/S0022-0728(76)80263-X
  7. H. Kita, H. Nakajima, and K. Shimizu, J. Electroanal. Chem., 248, 181 (1988). https://doi.org/10.1016/0022-0728(88)85160-X
  8. G. Samjeske, H. Wang, T. Loffler, and H. Baltruschat, Electrochim. Acta, 47, 3681 (2002). https://doi.org/10.1016/S0013-4686(02)00338-9
  9. R. T. S. Oliveira, M. C. Santos, B. G. Marcussi, P. A. P. Nascente, L. O. S. Bulhões, and E. C. Pereira, J. Electroanal. Chem., 575, 177 (2005). https://doi.org/10.1016/j.jelechem.2004.09.009
  10. N. M. Markoviċ, H. A. Gasteiger, P. N. Ross Jr, X. Jiang, I. Villegas, and M. J. Weaver, Electrochim. Acta, 40, 91 (1995). https://doi.org/10.1016/0013-4686(94)00241-R
  11. F. J. Rodriguez-Nieto, T. Y. Morante-Catacora, and C. R. Cabrera, J. Electroanal. Chem., 571, 15 (2004). https://doi.org/10.1016/j.jelechem.2004.04.008
  12. B. Gurau, R. Viswanathan, R. Liu, T. J. Lafrenz, K. L. Ley, E. S. S. Reddington, A. Sapienza, B. C. Chan, T. E. Mallouk, and S. Sarangapani, J. Phys. Chem. B, 102, 9997 (1998). https://doi.org/10.1021/jp982887f
  13. M. Umeda, H. Ojima, M. Mohamedi, and I. Uchida, J. Power Sources, 136, 10 (2004). https://doi.org/10.1016/j.jpowsour.2004.05.013
  14. J. H. Choi, K. W. Park, I. S. Park, W. H. Nam, and Y. E. Sung, Electrochim. Acta, 50, 787 (2004). https://doi.org/10.1016/j.electacta.2004.01.109
  15. K. W. Park, J. H. Choi, B. K. Kwon, S. A. Lee, Y. E. Sung, H. Y. Ha, S. A. Hong, H. S. Kim, and A. Wieckowski, J. Phys. Chem. B, 106, 1869 (2002). https://doi.org/10.1021/jp013168v
  16. W. B. Wang, G. P. Yin, P. F. Shi, and Y. C. Sun, Electrochem. Solid-State Lett., 9, A13 (2006). https://doi.org/10.1149/1.2133722
  17. J. Liu, J. Cao, Q. Huang, X. Li, Z. Zou, and H. Yang, J. Power Sources, 175, 159 (2008). https://doi.org/10.1016/j.jpowsour.2007.08.100
  18. P. Sivakumar and V. Tricoli, Electrochem. Solid-State Lett., 9, A167 (2006). https://doi.org/10.1149/1.2165709
  19. M. K. Jeon, J. Y. Won, K. R. Lee, and S. I. Woo, Electrochem. Commun., 9, 2163 (2007). https://doi.org/10.1016/j.elecom.2007.06.014
  20. W. C. Choi, J. D. Kim and S. I. Woo, Catal. Today, 74, 235 (2002). https://doi.org/10.1016/S0920-5861(02)00026-3
  21. K. W. Park, J. H. Choi, S. A. Lee, C. H. Pak, H. Chang, and Y. E. Sung, J. Catal., 224, 236 (2004). https://doi.org/10.1016/j.jcat.2004.02.010
  22. E. Reddington, A. Sapienza, B. Gurau, R. Viswanathan, S. Sarangapani, E. S. Smotkin, and T. E. Mallouk, Science, 280, 1735 (1998). https://doi.org/10.1126/science.280.5370.1735
  23. T. J. Schmidt, H. A. Gasteiger, G. D. Stab, P. M. Urban, D. M. Kolb, and R. J. Behm, J. Electrochem. Soc., 145, 2354 (1998). https://doi.org/10.1149/1.1838642
  24. N. M. Markovic and P. N. Ross, Surf. Sci. Rep., 45, 121 (2002).
  25. C. Lamy, A. Lima, V. Le Rhun, C. Coutanceau, and J. M. Leger, J. Power Sources, 105, 283 (2002). https://doi.org/10.1016/S0378-7753(01)00954-5
  26. H. A. Gasteiger, N. M. Markovic, P. N. Ross, and E. J. Cairns, Electrochim. Acta, 39, 1825 (1994). https://doi.org/10.1016/0013-4686(94)85171-9
  27. C. He, H. R. Kunz, and J. M. Fenton, J. Electrochem. Soc., 144, 970 (1997). https://doi.org/10.1149/1.1837515
  28. Z. B. Wang, P. J. Zuo, and G. P. Yin, J. Alloy. Compd., 479, 395 (2009). https://doi.org/10.1016/j.jallcom.2008.12.061
  29. V. Radmiloviċ, H. A. Gasteiger, and P. N. Ross, J. Catal., 154, 98 (1995). https://doi.org/10.1006/jcat.1995.1151
  30. A. S. Arico, S. Srinivasan, and V. Antonucci, Fuel Cells, 1, 133 (2001). https://doi.org/10.1002/1615-6854(200107)1:2<133::AID-FUCE133>3.0.CO;2-5
  31. M. T. M. Koper, J. J. Lukkien, A. P. J. Jansen, and R. A. van Santen, J. Phys. Chem. B, 103, 5522 (1999). https://doi.org/10.1021/jp990520k
  32. W. C. Choi and S. I. Woo, J. Power Sources, 124, 420 (2003). https://doi.org/10.1016/S0378-7753(03)00812-7
  33. E. M. Crabb, R. Marshall, and D. Thompsett, J. Electrochem. Soc., 147, 4440 (2000). https://doi.org/10.1149/1.1394083
  34. J. W. Guo, T. S. Zhao, J. Prabhuram, R. Chen, and C. W. Wong, Electrochim. Acta, 51, 754 (2005). https://doi.org/10.1016/j.electacta.2005.05.056
  35. A. Kabbabi, R. Faure, R. Durand, B. Beden, F. Hahn, J. M. Leger, and C. Lamy, J. Electroanal. Chem., 444, 41 (1998). https://doi.org/10.1016/S0022-0728(97)00558-5
  36. J. Jiang and A. Kucernak, J. Electroanal. Chem., 543, 187 (2003). https://doi.org/10.1016/S0022-0728(03)00046-9
  37. J. Jiang and A. Kucernak, J. Electroanal. Chem., 520, 64 (2002). https://doi.org/10.1016/S0022-0728(01)00739-2