Preparation of Polyurushiol (PUOH) Using Urushiol and Property of LDPE / PUOH Composite Films

우루시올을 활용한 폴리우루시올(PUOH)제조 및 LDPE/PUOH 복합필름 특성에 관한 연구

  • 김도완 (연세대학교 과학기술대학 패키징학과) ;
  • 김인수 (연세대학교 과학기술대학 패키징학과) ;
  • 서종철 (연세대학교 과학기술대학 패키징학과) ;
  • 서정상 ((주)한국내쇼날)
  • Published : 2012.12.10

Abstract

Urushiol extracted from lacquer tree exhibits good thermal stabilities as well as antimicrobial andantioxidant properties. However, it has been known that the urushiol derivates bring out allergy. In this study, polyurushiol (PUOH) powders were successfully synthesized for the safe and convenient handling of allergic urushiol. First, the as-synthesized PUOH was confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), thermal gravimetric analyzer (TGA), antioxidant test and antimicrobial test. And then, six different LDPE/PUOH composite films were prepared via a twin screw extruder system and investigated their feasibility to use as active packaging materials. Their chemical structures, morphology, thermal optical and antimicrobial properties of the LDPE/PUOH composite films were investigated as a function of PUOH contents. FTIR and SEM results showed that LDPE/PUOH composite films have a weak interfacial interaction and poor dispersion with a high PUOH loading. The thermal properties increased up to 3 wt% as the content of PUOH increases. Compared to the pure LDPE films, LDPE/PUOH composite films are more effective in the UV absorbance and antibacterial activity against E. coli. To maximize the performance of LDPE/PUOH compositefilms as the packaging materials, further researches are required to enhance the dispersion of PUOH powders in the LDPE matrix.

Keywords

urushiol;polyurushiol;active packaging films;antimicrobial property;LDPE/PUOH composite film

References

  1. M. Ramos, A. Jimenez, M. Peltzer, and M. Garrios, J. Food Eng., 109, 513 (2012). https://doi.org/10.1016/j.jfoodeng.2011.10.031
  2. G. Jeon, S. Park, J. Seo, K. Seo, H. Han, and Y. You, J. Korean Ind. Eng. Chem., 22, 610 (2011).
  3. C. Sivestre, D. Duraccio, and S. Cimmino, Prog. Polym. Sci., 36, 1766 (2011). https://doi.org/10.1016/j.progpolymsci.2011.02.003
  4. C. Lim, I. Hong, S. Hong, K. Jang, J. S. Kim, and H. Kim, J. Sol-gel Sci. Technol., 30, 117 (2004). https://doi.org/10.1023/B:JSST.0000034699.65225.5d
  5. P. Appendinia, J. H. Hotchkissb, Innov. Food Sci. Emer. Technol, 3, 113 (2002). https://doi.org/10.1016/S1466-8564(02)00012-7
  6. Y. Lee, Y. E. Lee, J. Lee, and Y. Kim, Kor. J. Hort. Sci., 29, 447 (2011).
  7. H. Kim, J. Yeum, S. Choi, J. Lee, and I. Cheong, Prog. Org. Coat., 65, 341 (2009). https://doi.org/10.1016/j.porgcoat.2009.02.002
  8. H. Kim, J. Yeum, S. Choi, J. Lee, and I. Cheong, Prog. Org. Coat., 65, 341 (2009). https://doi.org/10.1016/j.porgcoat.2009.02.002
  9. K. Jang and H. Shin, Korean Chem. Eng. Res., 45, 473 (2007).
  10. J. M. Lee, P. Chang, and J. H. Lee, Korean J. Food Sci. Technol., 39, 133 (2007).
  11. J. Kim and M. Kim, J. Med. Plant Res., 5, 2617 (2011).
  12. Korea Standard Information Center KS J 4206.
  13. Japanese Industrial Standard JIS Z 2801, 2000.
  14. J. Xia, Y. Xu, J. Lin, and B. Hu, Mater. Lett., 63, 1499 (2009). https://doi.org/10.1016/j.matlet.2009.03.055
  15. X. Zheng, J. Wang, B. Hu, X. Lv, D. Meng, and A. S. C. Chan, Mater. Chem. Phys., 130, 1054 (2011). https://doi.org/10.1016/j.matchemphys.2011.08.032
  16. D. Kim, G. Jeon, Y. Lee, J. Seo, K. Seo, H. Han, and S. B. Khan, Prog. Org. Coat., 74, 435 (2012). https://doi.org/10.1016/j.porgcoat.2012.01.007
  17. F. Yao, Q. Wu, Y. Lei, W. Guo, and Y. Xu, Polym. Degrad. Stab., 93, 90 (2008). https://doi.org/10.1016/j.polymdegradstab.2007.10.012
  18. E. Choe and D. B. Min, J. Food Sci. Nutr., 46, 1 (2006).
  19. M. R. Moreira, M. Pereda, N. E. Marcovich, and S. I. Roura, J. Food Sci., 76, 54 (2011).
  20. Y. H. Choi, J. C. Kim, J. K. Ahn, S. Y. Ko, D. H. Kim, and T. Lee, J. Korean Ind. Eng. Chem., 14, 292 (2008). https://doi.org/10.1016/j.jiec.2008.01.012
  21. K. T. Suk, S. K. Baik, H. S. Kim, S. M. Park, K. J. Paeng, Y. Uh, I. H. Jang, M. Y. Cho, E. H. Choi, M. J. Kim, and Y. L. Ham, Helicobacter, 16, 434 (2011). https://doi.org/10.1111/j.1523-5378.2011.00864.x
  22. B. P. Suppakul, J. Miltz, K. sonneveld, and S. W. Bigger, Packag. Technol. Sci., 19, 259 (2006). https://doi.org/10.1002/pts.729
  23. J. V. Gulmine, P. R. Jnissek, H. M. Heise, and L. Akcelrud, Polym. Test., 21, 557 (2002). https://doi.org/10.1016/S0142-9418(01)00124-6
  24. J. Seo, G. Jeon, E. S. Jang, S. B. Khan, and H. Han, J. App. Polym. Sci., 122, 1101 (2011). https://doi.org/10.1002/app.34248
  25. P. K. Roy, P. Surekha, C. Rajagopal, and V. Choudhary, Express Polym. Lett., 1, 208 (2007). https://doi.org/10.3144/expresspolymlett.2007.32
  26. A. Jaroenworaluck, W. Sunsaneeyametha, N. Kosachan, and R. Stevens, Surf. Interface Anal., 38, 473 (2006).
  27. J. Hong and H. Kim, Macromol. Res., 14, 617 (2006). https://doi.org/10.1007/BF03218733
  28. Y. Lee, MS Dissertation, Yonsei University, Seoul, Korea (2011).
  29. X. Zheng, J. Wheng, Q. Huang, B. Hu, T. Qiao, and P. Deng, Colloids. Surf. A: Physicochem. Eng. Aspects, 337, 15 (2009). https://doi.org/10.1016/j.colsurfa.2008.11.038