Effect of Phase Stabilizers on the Phase Formation and Sintering Density of $Na^+$-Beta-Alumina Solid Electrolyte

상 안정화제가 $Na^+$-Beta-Alumina 고체 전해질의 상 형성 및 소결밀도에 미치는 영향

  • Lee, Ki-Moon (Department of Materials Chemistry and Engineering, Konkuk University) ;
  • Lee, Sung-Tae (Department of Materials Chemistry and Engineering, Konkuk University) ;
  • Lee, Dae-Han (Department of Materials Chemistry and Engineering, Konkuk University) ;
  • Lee, Sang-Min (Department of Materials Chemistry and Engineering, Konkuk University) ;
  • Lim, Sung-Ki (Department of Materials Chemistry and Engineering, Konkuk University)
  • 이기문 (건국대학교 신소재공학과) ;
  • 이성태 (건국대학교 신소재공학과) ;
  • 이대한 (건국대학교 신소재공학과) ;
  • 이상민 (건국대학교 신소재공학과) ;
  • 임성기 (건국대학교 신소재공학과)
  • Published : 2012.12.10

Abstract

$Na^+$-beta-alumina solid electrolyte was synthesized by solid state reaction using $Li_2O$ and MgO as a phase stabilizer, and the effect of stabilizers on the phase formation and sintering density was investigated. In order to determine the phase fraction according to the synthesizing temperature, the molar ratio of [$Na_2O$] : [$Al_2O_3$] was fixed at 1 : 5, and calcination was conducted at temperatures between $1200{\sim}1500^{\circ}C$ for 2 h. In the $Li_2O$-$Na_2O$-$Al_2O_3$ ternary system, ${\beta}^{{\prime}{\prime}}$-alumina phase fraction considerably increased by the secondary phase transition at $1500^{\circ}C$, whereas it maintained similarly in the MgO-$Na_2O$-$Al_2O_3$ system. Additionally, the disc-type specimens of $Na^+$-beta-alumina were sintered at the temperature between $1550{\sim}1650^{\circ}C$ for 30 min, and relative sintering densities, phase changes, and microstructures were analyzed. In case of $Li_2O$-stabilized $Na^+$-beta-alumina, ${\beta}^{{\prime}{\prime}}$-phase fraction and relative density of specimen sintered at $1600^{\circ}C$ were 94.7% and 98%, respectively. Relative density of MgO-stabilized $Na^+$-beta-alumina increased with a rise in sintering temperature.

Keywords

$ Na^+$-beta-alumina;solid electrolyte;phase stabilizer;sintering density

References

  1. J. Fally, C. Lasne, Y. Lazennec, Y. Le Cars, and P. Margotin, J. Electrochem. Soc., 120, 1296 (1973). https://doi.org/10.1149/1.2403250
  2. G. E. Youngblood, A. V. Virkar, W. R. Cannon, and R. S. Gordon, Ceram. Bull., 56, 206 (1977).
  3. J. B. Bush, Principal Investigator, General Electric Company Research and Development Center ; Electric Power Research Institute, RP 128-2 (1975).
  4. J. Bera, J. Mater. Sci. Lett., 12, 27 (1993).
  5. L. Zuxiang and C. Kungang, in "Microstructure and properties of ceramic materials," edited by T. S. Yen and J. A. Pask, Plenum Press, New York, 391 (1984).
  6. J. D. Hodge, Amer. Ceram. Soc. Bull., 56, 206 (1977).
  7. S. T. Lee, S. G. Kim, M. H. Jang, S. H. Hwang, J. R. Haw, and S. K. Lim, J. Ceram. Pro. Res., 11, 86 (2010).
  8. A. P. de Kroon, G. W. Schafer, and F. Aldinger, Chem. Mater., 7, 878 (1995). https://doi.org/10.1021/cm00053a011
  9. H. I. Song, E. S. Kim, and K. H. Yoon, Physica B., 150, 148 (1988). https://doi.org/10.1016/0378-4363(88)90117-9
  10. H. I. Song, E. S. Kim, and K. H. Yoon, Physica B., 150, 148 (1988). https://doi.org/10.1016/0378-4363(88)90117-9
  11. J. Bera, Solid State Comm., 82, 205 (1992). https://doi.org/10.1016/0038-1098(92)90265-B
  12. A. D. Jatkar, I. B. Cutler, A. V. Virkar, and R. S. Gordon, in "Processing of crystalline ceramics," edited by H. Parmer, R. F. Davis and T. M. Hare, Plenum Press, New York, 421 (1978).
  13. "Research on Electrodes and Electrolyte for the Ford Sodium-Sulfur Battery", annual report (June 30, 1974 to June 29, 1975), contract NSF (RANN)-C805, July (1975).