A Study on Isoelectric Point and Softness of an Ethylene Oxide Adducted Amphoteric Surfactant

에틸렌 옥사이드가 부가된 양쪽성 계면활성제의 등전점 및 유연력에 관한 연구

  • Lim, JongChoo (Department of Chemical and Biochemical Eng., Dongguk University) ;
  • Park, JunSeok (Central Research Laboratories, Aekyung) ;
  • Han, DongSung (Central Research Laboratories, Aekyung) ;
  • Kim, JiSung (Department of Chemical and Biochemical Eng., Dongguk University) ;
  • Lee, Seul (Department of Chemical and Biochemical Eng., Dongguk University) ;
  • Mo, DaHee (Department of Chemical and Biochemical Eng., Dongguk University) ;
  • Lee, JinSun (Department of Chemical and Biochemical Eng., Dongguk University)
  • 임종주 (동국대학교 공과대학 화공생물공학과) ;
  • 박준석 (애경산업(주) 중앙연구소) ;
  • 한동성 (애경산업(주) 중앙연구소) ;
  • 김지성 (동국대학교 공과대학 화공생물공학과) ;
  • 이슬 (동국대학교 공과대학 화공생물공학과) ;
  • 모다희 (동국대학교 공과대학 화공생물공학과) ;
  • 이진선 (동국대학교 공과대학 화공생물공학과)
  • Published : 2012.12.10

Abstract

In this study, we analyzed the physical properties of an ethylene oxide adducted amphoteric surfactant such as critical micelle concentration, surface tension, interfacial tension, contact angle, viscosity and phase behavior. The dual function characteristics of an amphoteric surfactant were investigated by determining an isoelectric point, which were attained using zeta potential measurements and quartz crystal microbalance (QCM) experiments. The isoelectric points of DE3-OSA82-AO, DE5-OSA82-AO and DE9-OSA82-AO surfactant systems determined by zeta potential measurements were 6.97, 6.93 and 7.10 respectively and they are in good agreement with the isoelectric point values measured by QCM experiments. The frictional property measured using an automated mildness tester showed that the DE-OSA82-AO surfactant could provide a good softening effect at neutral condition.

Keywords

amphoteric surfactant;ethylene oxide;softness;isoelectric point

References

  1. W. G. Cutler and E. Kissa, Detergency : Theory and Technology, Surfactant Science Series, 20, 1, Marcel Dekker, New York (1987).
  2. A. M. Schwartz, The Physical Chemistry of Detergency ed. E. Matijevic, Surface Colloid Sci., 195, Wiley, New York (1972).
  3. C. A. Miller and P. Neogi, Interfacial Phenomena : Equilibrium and Dynamic Effects, Surfactant Science Serie, 17, 150, Marcel Dekker, New York (1985).
  4. J. C. Lim, J. Kor. Ind. Eng. Chem., 6, 610 (1995).
  5. J. C. Lim, J. Kor. Ind. Eng. Chem., 8, 473 (1997).
  6. S. K. Lee, J. W. Han, B. H. Kim, P. G. Shin, S. K. Park, and J. C. Lim, J. Kor. Ind. Eng. Chem., 10, 537 (1999). https://doi.org/10.1007/s100510050883
  7. H. K. Ko, B. D. Park, and J. C. Lim, J. Kor. Ind. Eng. Chem., 11, 679 (2000).
  8. J. G. Lee, S. S. Bae, I. S. Cho, S. J. Park, B. D. Park, S. K. Park, and J. C. Lim, J. Kor. Ind. Eng. Chem., 16, 664 (2005).
  9. J. G. Lee, S. S. Bae, I. S. Cho, S. J. Park, B. D. Park, S. K. Park, and J. C. Lim, J. Kor. Ind. Eng. Chem., 16, 677 (2005).
  10. J. C. Lim, J. Kor. Ind. Eng. Chem., 16, 778 (2005).
  11. M. J. Bae and J. C. Lim, J. Kor. Ind. Eng. Chem., 20, 15 (2009).
  12. M. J. Bae and J. C. Lim, Korean Chem. Eng. Res., 47, 24 (2009).
  13. M. J. Bae and J. C. Lim, Korean Chem. Eng. Res., 47, 46 (2009).
  14. M. J. Bae and J. C. Lim, J. Kor. Ind. Eng. Chem., 20, 473 (2009).
  15. S. Lee, B. J. Kim, J. G. Lee, and J. C. Lim, Appl. Chem. Eng., 22, 37 (2011).
  16. U. S. Patent 7,538,248 (2009).
  17. J. C. Lim, J. S. Kim, D. H. Mo, and J. S. Lee, Appl. Chem. Eng., 23, 112 (2012).
  18. D. S. Han, K. M. Yoo, J. S. Park, G. Y. Chi, K. M. Lee, and J. C. Lim, Applied Chemistry, 11, 229 (2007). https://doi.org/10.1002/jctb.5010110701
  19. K. Rendall, G. J. T. Tiddy, and M. A. Trevethan, J. Colloid Interface Sci., 98, 565 (1984) https://doi.org/10.1016/0021-9797(84)90183-8
  20. H. Hoffmann, C. Thunig, and C. A. Miller, Colloid Surf. A: Physicochem. Eng. Aspects, 67, 223 (1992).
  21. Y. C. Ro and K. D. Nam, J. Kor. Ind. Eng. Chem., 5, 749 (1994).
  22. M. J. Rosen, T. Gao, Y. Nakasuji, and A. Masuyama, Colloid Surf. A: Physicochem. Eng. Aspects, 88, 1 (1994). https://doi.org/10.1016/0927-7757(94)80080-4
  23. M. J. Rang, J. C. Lim, C. A. Miller, C. Thunig, and H. H. Hoffmann, J. Colloid Interface Sci., 175, 440 (1995). https://doi.org/10.1006/jcis.1995.1474
  24. I. Harwigsson, F. Tiberg, and Y. Chevalier, J. Colloid Interface Sci., 183, 380 (1996). https://doi.org/10.1006/jcis.1996.0560
  25. P. D. Maria, A. Fontana, C. Gasbarri, and G. Siani, Tetrahedron, 61, 7176 (2005). https://doi.org/10.1016/j.tet.2005.05.035
  26. J. C. Lim and D. S. Han, Colloid Surf. A: Physicochem. Eng. Aspects, 389, 166 (2011). https://doi.org/10.1016/j.colsurfa.2011.08.034
  27. J. C. Lim, J. S. Kim, and J. S. Lee, Accepted at Appl. Chem. Eng. (2012).
  28. J. S. Kim, J. S. Park, and J. C. Lim, J. Kor. Ind. Eng. Chem., 20, 9 (2009).
  29. J. S. Kim, J. S. Park, and J. C. Lim, Korean Chem. Eng. Res., 47, 31 (2009).
  30. J. S. Kim and J. C. Lim, J. Kor. Ind. Eng. Chem., 20, 479 (2009).
  31. J. S. Kim and J. C. Lim, Korean Chem. Eng. Res., 47, 38 (2009).
  32. T. Y. Chiu and A. E. James, Colloid Surf. A: Physicochem, Eng. Aspects, 280, 58 (2006). https://doi.org/10.1016/j.colsurfa.2006.01.030
  33. M. W. Jeong, S. G. Oh, and Y. C. Kim, Colloid Surf. A: Physicochem. Eng. Aspects, 181, 247 (2001). https://doi.org/10.1016/S0927-7757(00)00796-2