Organic Memory Device Using Self-Assembled Monolayer of Nanoparticles

나노입자 자기조립 단일층을 이용한 유기메모리 소자

  • Jung, Hunsang (Department of Chemical Engineering, Myongji University) ;
  • Oh, Sewook (Department of Chemical Engineering, Myongji University) ;
  • Kim, Yejin (Department of Chemical Engineering, Myongji University) ;
  • Kim, Minkeun (Department of Chemical Engineering, Myongji University) ;
  • Lee, Hyun Ho (Department of Chemical Engineering, Myongji University)
  • 정헌상 (명지대학교 화학공학과) ;
  • 오세욱 (명지대학교 화학공학과) ;
  • 김예진 (명지대학교 화학공학과) ;
  • 김민근 (명지대학교 화학공학과) ;
  • 이현호 (명지대학교 화학공학과)
  • Published : 2012.12.10

Abstract

In this review, the fabrication of silicon based memory capacitor and organic memory thin film transistors (TFTs) was discussed for their potential identification tag applications and biosensor applications. Metal or non-metal nanoparticles (NPs) could be capped with chemicals or biomolecules such as protein and oligo-DNA, and also be self-assembly monolayered on corresponding target biomolecules conjugated dielectric layers. The monolayered NPs were formed to be charging elements of a nano floating gate layer as forming organic memody deivces. In particular, the strong and selective binding events of the NPs through biomolecular interactions exhibited effective electrostatic phenomena in memory capacitors and TFTs formats. In addition, memory devices fabricated as organic thin film transistors (OTFTs) have been intensively introduced to facilitate organic electronics era on flexible substrates. The memory OTFTs could be applicable eventually to the development of new conceptual devices.

Keywords

nanoparticle;memory device;self-assembled monolayer

References

  1. S.-J. Kim, and J.-S. Lee, Nano Lett., 10, 2884 (2010). https://doi.org/10.1021/nl1009662
  2. S. Wang, C.-W. Leung, and P. K. L. Chan, Organ. Elect., 11. 990 (2010). https://doi.org/10.1016/j.orgel.2010.03.020
  3. S. Paul, C. Pearson, A. Molloy, M. A. Cousins, M. Green, S. Kolliopoulou, P. Dimitrakis, P. Normand, D. Tsoukalas, and M. C. Petty, Nano Lett., 3, 533 (2003). https://doi.org/10.1021/nl034008t
  4. H.-J. Kim, S. M. Jung, B.-J. Kim, T.-S. Yoon, Y.-S. Kim, and H. H. Lee, J. Ind. Eng. Chem., 16, 848 (2010). https://doi.org/10.1016/j.jiec.2010.03.021
  5. B.-J. Kim, H.-J. Kim, S. M. Jung, Y.-H. Kim, S. Ha, T.-S. Yoon, and H. H. Lee, Thin Sol. Film, 519, 4319 (2011). https://doi.org/10.1016/j.tsf.2011.02.035
  6. Y. H. Kim, S. M. Jung, T. S. Yoon, Y. S. Kim, and H. H. Lee, Electrochem. Solid-St. Lett., 14, H149 (2011). https://doi.org/10.1149/1.3544488
  7. Y. H. Kim, S. M. Jung, Q. Hu, Y.-S. Kim, T.-S. Yoon, and H. H. Lee, J. Nanotechnol. Nanosci., 11, 6044 (2011). https://doi.org/10.1166/jnn.2011.4370
  8. Y. Kim, M. Kim, S. Oh, H. Jung, Y. Kim, and H. H. Lee, Appl. Phys. Lett., 100, 163301 (2012). https://doi.org/10.1063/1.4704571
  9. C. W. Chu, J. Ouyang, J.-H. Tseng, and Y. Yang, Adv. Mater., 17, 1440 (2005). https://doi.org/10.1002/adma.200500225
  10. S. Song, B. Cho, T.-W. Kim, Y. Ji, M. Jo, G. Wang, M. Choe, Y. H. Kahng, H. Hwang, and T. Lee, Adv. Mater., 22, 5048 (2010). https://doi.org/10.1002/adma.201002575
  11. R. G. Nuzzo and D. L. Allara, J. Am. Chem. Soc., 105, 4481 (1983). https://doi.org/10.1021/ja00351a063
  12. C. D. Bain and G. M. Whitesides, Science, 240, 62 (1988). https://doi.org/10.1126/science.240.4848.62
  13. P. E. Laibinis, J. J. Hickman, M. S. Wrighton, and G. M. Whitesides, Science, 245, 845 (1989). https://doi.org/10.1126/science.245.4920.845
  14. F. Caruso, Adv. Mater., 13, 11 (2001). https://doi.org/10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-N
  15. S. K Arya, P. R. Solanki, M. Datta, and B. D Malhotra, Biosens. Bioelectron, 24, 2810 (2009). https://doi.org/10.1016/j.bios.2009.02.008
  16. H. McNally, M. Pingle, S. W. Lee, D. Guo, D. E. Bergstrom, and R. Bashir, Appl. Surf. Sci., 214, 109 (2003). https://doi.org/10.1016/S0169-4332(03)00266-6
  17. A. Miura, R. Tsukamato, S. Yoshii, I. Yamashita, Y. Uraoka, and T. Fuyuki, Nanotechnol., 19, 255201 (2008). https://doi.org/10.1088/0957-4484/19/25/255201
  18. N. A. Lapin and Y. J. Chabal, J. Phys. Chem. B, 113, 8776 (2009). https://doi.org/10.1021/jp809096m
  19. S. M. Jung, H. -J. Kim, B. -J. Kim, T. -S. Yoon, Y. -S. Kim, and H. H. Lee, Appl. Phys. Lett., 97, 153302 (2010). https://doi.org/10.1063/1.3500824
  20. R. J. Tseng, C. Tsai, L. Ma, J. Ouyang, and C. S. Ozkan, Nature Nanotechnol., 1, 72 (2006). https://doi.org/10.1038/nnano.2006.55
  21. N. G. Portney, A. A. Martinez-Morales, and M. Ozkan, ACS Nano, 2, 191 (2008). https://doi.org/10.1021/nn700240z
  22. Z. Li, Y. Chen, X. Li, T. I. Kamins, K. Nauka, and R. S. Williams, Nano Lett., 4, 245 (2004). https://doi.org/10.1021/nl034958e
  23. S.-W. Ryu, C.-H. Kim, J.-W. Han, C.-J. Kim, C. Jung, H. G. Park, and Y.-K. Choi, Biosens. Bioelectron., 25, 2182 (2010). https://doi.org/10.1016/j.bios.2010.02.010
  24. C.-H. Kim, C. Jung, K.-B Lee, H. G. Park, and Y.-K. Choi, Nanotechnol., 22, 135502 (2011). https://doi.org/10.1088/0957-4484/22/13/135502
  25. K.-M. Song, S. Lee, and C. Ban, Sensors, 12, 612 (2012). https://doi.org/10.3390/s120100612